{1;3;5;...;99} -множество нечётных чисел меньших 100 Сколько их? а₁=1; a₂=3 => d=a₂-a₁=3-1=2 a(n)=99 a(n)=a₁+d(n-1) 1+2(n-1)=99 2(n-1)=98 n-1=49 n=50 - количество нечётных чисел меньших 100
{3;9;15;...;99} - множество нечётных чисел кратных числу 3 и меньших 100 Сколько их? a₁=3, a₂=9 => d=a₂-a₁=9-3=6 a(m)=99 a(m)=a₁+d(m-1) 3+6(m-1)=99 6(m-1)=96 m-1=16 m=17 - количество нечётных чисел кратных числу 3 и меньших 100
{5;15;25;...;95} - множество нечётных чисел кратных числу 5 и меньших 100 а₁=5; а₂=15 => d=a₂-a₁=15-5=10 a(p)=a₁+d(p-1) 5+10(p-1)=95 10(p-1)=90 p-1=9 p=10 - количество нечётных чисел кратных числу 5 и меньших 100
Среди нечётных чисел кратных числам 3 и 5 одновременно встречаются числа 15; 45 и 75 (всего их 3) Общее количество нечётных натуральных чисел, делящихся на 3 или на 5: m+p-3=17+10-3=24
Количество нечётных натуральных чисел, которые не делятся ни на 3, ни на 5 равно: 50-24=26
11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
Сколько их?
а₁=1; a₂=3 => d=a₂-a₁=3-1=2
a(n)=99
a(n)=a₁+d(n-1)
1+2(n-1)=99
2(n-1)=98
n-1=49
n=50 - количество нечётных чисел меньших 100
{3;9;15;...;99} - множество нечётных чисел кратных числу 3 и меньших 100
Сколько их?
a₁=3, a₂=9 => d=a₂-a₁=9-3=6
a(m)=99
a(m)=a₁+d(m-1)
3+6(m-1)=99
6(m-1)=96
m-1=16
m=17 - количество нечётных чисел кратных числу 3 и меньших 100
{5;15;25;...;95} - множество нечётных чисел кратных числу 5 и меньших 100
а₁=5; а₂=15 => d=a₂-a₁=15-5=10
a(p)=a₁+d(p-1)
5+10(p-1)=95
10(p-1)=90
p-1=9
p=10 - количество нечётных чисел кратных числу 5 и меньших 100
Среди нечётных чисел кратных числам 3 и 5 одновременно встречаются числа 15; 45 и 75 (всего их 3)
Общее количество нечётных натуральных чисел, делящихся на 3 или на 5:
m+p-3=17+10-3=24
Количество нечётных натуральных чисел, которые не делятся ни на 3, ни на 5 равно: 50-24=26
ответ: 26