Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
Найдём 1 производную функции y'=3*x²-6 и приравняем её к нулю 3*х²=6⇒х1=√2 (min, производная меняет знак с - на + при возрастании х) и х2=-√2 (min, производная меняет знак с + на - при возрастании х). Левее х2 и правее х1 производная неограниченно возрастает, поэтому к точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает.
ответ: точки экстремума х1 и х2. К точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает.
(х2+у2)/(х+у)=5
х=3у
10у^2/4у=5
2,5у=5
у=2
х=3*2=6