М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ctypakelizaveta
Ctypakelizaveta
19.11.2021 11:52 •  Алгебра

Решите и если можете расшифруйте, буду очень благодарна вам, кем бы вы ни были


Решите и если можете расшифруйте, буду очень благодарна вам, кем бы вы ни были

👇
Ответ:
likairin00Lika123
likairin00Lika123
19.11.2021

p= -6; q=8

Объяснение:

y = x²+ px+ q

y(3) = -1

Если у(3) является вершиной, то есть экстремумом функции, данное значение х является нулем функции.

у'= 2x + p, при этом у'(3) = 0.

Решаем уравнение:

0 = 2*3 + р

р = -6

Теперь, когда значение р известно, можно найти q, решив уравнение:

-1 = 3²-6(3) +q

-1 = 9 -18 + q

q = 8

4,8(95 оценок)
Открыть все ответы
Ответ:
Gendalf1875
Gendalf1875
19.11.2021

Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).

Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.

Перед тем, как перейти к алгоритму симплекс метода, несколько определений.

Всякое неотрицательное решение системы ограничений называется допустимым решением.

Пусть имеется система m ограничений с n переменными (m < n).

Допустимым базисным решением является решение, содержащее m неотрицательных основных (базисных) переменных и n - m неосновных. (небазисных, или свободных) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.

Любые m переменных системы m линейных уравнений с n переменными называются основными, если определитель из коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).

Алгоритм симплекс метода

Шаг 1. Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").

Шаг 2. Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.

Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.

Шаг 4. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.

Важные условия

Если допустимое базисное решение даёт оптимум линейной формы (критерий оптимальности выполнен), а в выражении линейной формы через неосновные переменные отсутствует хотя бы одна из них, то полученное оптимальное решение - не единственное.

Если в выражении линейной формы имеется неосновная переменная с отрицательным коэффициентом в случае её максимизации (с положительным - в случае минимизации), а во все уравнения системы ограничений этого шага указанная переменная входит также с отрицательными коэффициентами или отсутствует, то линейная форма не ограничена при данной системе ограничений. В этом случае её максимальное (минимальное) значение записывают в виде .

На сайте есть Онлайн калькулятор решения задач линейного программирования симплекс-методом.

4,6(62 оценок)
Ответ:
fofanchuk
fofanchuk
19.11.2021
1.  -12х + 3ху – 2( х +3ху)=-12х+3ху-2х-6ху=-14х-3ху   ответ. г) -14х – 3ху
2. 30 + 5(3х – 1) = 35х – 25,
     30+15х-5=35х-25,
     15х-35х=-25-30+5,
     -20х=-50
     х=2,5
ответ. 2,5
3. а) 7ха – 7хb=7х(a-b)
    б) 16ху² + 12х²у=4xy(4y+3x)
4. Обозначим все поле - S  га
   S/14  га  должна была пахать в день
  (S/14) +5   га в день пахали
   вспахали все поле за 12 дней.
((S/14)+5 )·12=S
12S/14+60=S
2S/14=60
S=420 га
ответ. 420 га вспахала бригада

5. а) непонятное условие
б) х2 + ⅛ х = 0
     x(x+1/8)=0
x=0     или  х+1/8=0
                   х=-1/8
ответ. 0; - 1/8
4,4(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ