1) задуманное число х
квадрат задуманного числа х²
От квадрата задуманного натурального числа х отняли 63
значит х²-63 и получили удвоенное задуманное число т.е. 2х
составим уравнение
x²-63=2x
x²-2x-63=0
по т.Виетта
х₁+х₂=2 и х₁*х₂= -63
тогда х₁= -7 и х₂=9
Проверим: (-7)²-63=49-63= - 14 = 2*(-7)
9²-63=81-63=18=2*9
2) Четное число- характеристика целого числа, определяющая его делиться нацело на два. Запишем четное число 2х
тогда следующее четное число 2х+2
по условию (2х+2)² больше чем 2х в 9 раз
составим уравнение
(2х+2)²=9*2х
4x²+8x+4=18x
4x²-10x+4=0 |:2
2x²-5x+2=0
D=25-16=9
x₁=(5+3)/4=2
x₂=(5-3)/4=1/2 - не целое число, а значит не является четным
тогда 2x= 2*2=4 это первое число
2х+2=4+2=6 это второе число
Проверим: 6²=36=9*4
Відповідь:
(Понятия «больше» и «меньше» наряду с понятием равенства возникли в связи со счетом предметов и необходимостью сравнивать различные величины. Понятиями неравенства пользовались уже древние греки. Архимед (III в. до н. э.), занимаясь вычислением длины окружности, установил, что «периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых».
Ряд неравенств приводит в своем знаменитом трактате «Начала» Евклид. Он, например, доказывает, что среднее геометрическое двух положительных чисел не больше их среднего арифметического и не меньше их среднего гармонического
Однако все эти рассуждения проводили словесно, опираясь в большинстве случаев на геометрическую терминологию. Современные знаки неравенств появились лишь в XVII— XVIII вв. Знаки < и > ввел английский математик Т. Гарриот (1560—1621), знаки ? и ? французский математик П. Бугер (1698—1758).)
Пояснення: