Для двух линейных функций у=k1x+b1 и у=k2x+b2 подберите такие коэффициенты k1,k2,b1,b2, чтобы их графики пересекались в первом координатном угле и одна из функций была бы убывающей,а вторая возрастающей. ))
Решение: k1 и к2 имеют разные знаки пусть для определенности k1>0 л2<0 k1x+b1=k2x+b2 x(k1-k2)=b2-b1 (b2-b1)/(k2-k1)>0 k2-k1>0 b2>b1 например y1=2x+3 y2=-3x+4
Смотри) так как уравнение с двумя переменными нужно сделать так чтоб она из переменых в любом случае сократилась,в примере а) и так уже есть переменные которые могут сократиться это х и -х вообщем сладываем получается 3y=6, решаем получаем 2,чтоб узнать y нам нужно подставить х в первое уравнение получаем новое уравнение х+2=4 решаем ответ 2
в примере б) нужно сделать переменную которая должна сократиться это будет y, для этого нам нужно второе уравнение умножить на -2 умножаем и получаем -8х-2y=-6 складываем первое и второе уравнение получаем -3х=6 отсюда х=-2 далее мы подставляем х во второе уравнение и получаем -8+y=3 и находим y решаем и y=11
Метод матем индукции 1) проверим делимость на 3 при n=1 при n=1 4n^3+6n^2+5n+9=4+6+5+9=24 - делится на 3 2) предположим что делится на 3 при n=k при n=к 4n^3+6n^2+5n+9=4k^3+6k^2+5k+9=(3k^3+6k^2+3k+9)+(k^3+2k) - делится на 3 значит (k^3+2k) - делится на 3, так как (3k^3+6k^2+3k+9) делится на 3 3) проверим делимость на 3 при n=k+1 при n=к+1 4n^3+6n^2+5n+9=4(к+1)^3+6(к+1)^2+5(к+1)+9= =(3(к+1)^3+6(к+1)^2+3(к+1)+9)+((к+1)^3+2(к+1)) = A+B A=(3(к+1)^3+6(к+1)^2+3(к+1)+9) - делится на 3 B=(к+1)^3+2(к+1)=k^3+3k^2+3k+1+2k+2=(k^3+2k)+(3k^2+3k+3) = C+D C = (k^3+2k) - делится на 3 (см пункт 2) ) D = (3k^2+3k+3) - делится на 3 значит B=C+D - делится на 3 значит 4n^3+6n^2+5n+9 при n=k+1 делится на 3 так как n=k+1 4n^3+6n^2+5n+9 = A+B <<< доказано методом математической индукции >>>>
k1 и к2 имеют разные знаки
пусть для определенности k1>0 л2<0
k1x+b1=k2x+b2
x(k1-k2)=b2-b1
(b2-b1)/(k2-k1)>0
k2-k1>0
b2>b1
например y1=2x+3 y2=-3x+4