Для удобства обозначим скорость автобуса х, а скорость экспресса у. Автобус до места встречи двигался 6+24=30 мин. = 1/2 часа Экспресс до места встречи двигался 24 мин. = 6/15 часа - по условию. Оба они проехали одинаковое расстояние, поэтому можно записать 1) (1/2)*х=(6/15)*у Далее запишем формулу при уменьшении скорости автобуса в 2 раза. За 6 мин. = 1/10 часа автобус проедет (х/2)*(1/10) = х/20 км За время t до встречи с экспрессом автобус проедет (x/2)*t=xt/2 км Экспресс за время t проедет yt км, можно записать: 2) (x/20)+(xt/2)=yt Из этой формулы выразим t: (x+10xt)/20=yt x+10xt=20yt x=20yt-10xt x=t(20y-10x) 3) t=x/(20y-10x) Теперь из формулы 1) выразим х: x=12y/15 и подставим в формулу 3) часа или 4 минуты
ответ: если бы скорость автобуса уменьшилась вдвое экспресс догнал бы его через 4 минуты.
И так для начало поясню. Это формулы сокращенного умножения. Их нужно выучить. И так: а) (2а+3)(2а-3)= Это квадрат разности вот как он выглядит: (а+б)(а-б)=а^2-б^2 Cледовательно, нужно возвести 2а в квадрат и 3 возвести в квадрат, вот как это будет выглядеть:(2а+3)(2а-3)=4а^2-9 б) делается также возводишь y в квадрат и 5b тоже в квадрат в)аналогично с а) и б) г)Это квадрат суммы. выглядит так, (a+b)^2=(a^2+2ab+b^2) нужно возвести а в квадрат потом произведение а и б умножить на два и потом прибавить квадрат б. Как будет выглядеть: (b+0,5)^2=(b^2+b+0,25) д) Это наоборот квадрат разности,выглядит так, (a-b)^2=(a^2-2ab+b^2), следовательно, (а-2х)^2= (a^2-4ax+4x^2) е) Аналогично
6+24=30 мин. = 1/2 часа
Экспресс до места встречи двигался 24 мин. = 6/15 часа - по условию.
Оба они проехали одинаковое расстояние, поэтому можно записать
1) (1/2)*х=(6/15)*у
Далее запишем формулу при уменьшении скорости автобуса в 2 раза.
За 6 мин. = 1/10 часа автобус проедет
(х/2)*(1/10) = х/20 км
За время t до встречи с экспрессом автобус проедет
(x/2)*t=xt/2 км
Экспресс за время t проедет yt км, можно записать:
2) (x/20)+(xt/2)=yt
Из этой формулы выразим t:
(x+10xt)/20=yt
x+10xt=20yt
x=20yt-10xt
x=t(20y-10x)
3) t=x/(20y-10x)
Теперь из формулы 1) выразим х:
x=12y/15
и подставим в формулу 3)
или 4 минуты
ответ: если бы скорость автобуса уменьшилась вдвое экспресс догнал бы его через 4 минуты.