а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)
лучше конечно читать параграф но я нашёл обьяснения
Объяснение:
Нули функции
Нулём функции называется то значение х, при котором функция обращается в 0, то есть f(x)=0.
Нули – это точки пересечения графика функции с осью Ох.
Четность функции
Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)
Четная функция симметрична относительно оси Оу
Нечетность функции
Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).
Нечетная функция симметрична относительно начала координат .
Функция которая не является ни чётной ,ни нечётной называется функцией общего вида.
Возрастание функции
Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е. x2>x1 → f(x2)>f(x1)
Убывание функции
Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е. x2>x1 → f(x2)<f(x1)
Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности. Функция f(x) имеет 3 промежутка монотонности:
(-∞ x1), (x1, x2), (x3; +∞)
Находят промежутки монотонности с сервиса Интервалы возрастания и убывания функции
Локальный максимум
Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) > f(x)
Локальный минимум
Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) < f(x).
Точки локального максимума и точки локального минимума называются точками локального экстремума.
x1, x2 - точки локального экстремума.
Периодичность функции
Функция f(x) называется периодичной, с периодом Т, если для любого х выполняется равенство f(x+T) = f(x).
Промежутки знакопостоянства
Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.
f(x)>0 при x∈(x1, x2)∪(x2, +∞), f(x)<0 при x∈(-∞,x1)∪(x1, x2)
Непрерывность функции
Функция f(x) называется непрерывной в точке x0, если предел функции при x → x0 равен значению функции в этой точке, т.е. .
Точки разрыва
Точки, в которых нарушено условие непрерывности называются точками разрыва функции.
x0- точка разрыва.