М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
romashchenko17
romashchenko17
12.05.2020 14:39 •  Алгебра

решить пример. 2-√3/2√3
Причём 2-√3 делённое дробью на 2√3.
И объясните как решить,если не сложно.

👇
Открыть все ответы
Ответ:
Mystery322
Mystery322
12.05.2020
Теперь,   используя   график   функции   у = tg х в интервале 0 < х < π/2   можно построить график этой функции и в интервале — π/2 < х <0. Для этого  воспользуемся    тождествомtg (—φ) = — tg φ.Оно указывает на то, что график функции y = tg x симметричен относительно начала координат. Отсюда сразу же получается та часть графика,   которая   соответствует   значениям — π/2 < х <0Функция y = tg x периодична с периодом π. Поэтому теперь для построения ее графика нам остается лишь продолжить периодически кривую, представленную на рисунке, влево и вправо с периодом   π. В результате получается кривая, которая называется тангенсоидой.Тангенсоида хорошо иллюстрирует все те основные свойства функции у = tg x,   которые раньше были доказаны нами.   Напомним эти свойства.1)  Функция у = tg x определена для всех, значений х,   кроме х = π/2 + nπ, где n — любое целое число. Таким образом, областью ее определения служит совокупность всех действительных чисел, кроме х = π/2 + nπ.2)  Функция у = tg x   не ограничена.  Она  может принимать как  любые  положительные,   так  и  любые   отрицательные   значения. Следовательно, областью ее изменения является совокупность всех действительных чисел. Среди этих чисел нельзя указать ни наибольшего, ни наименьшего.3)  Функция у = tg x  нечетна (тангенсоида симметрична относительно начала координат).4)  Функция у = tg x периодична с периодом π.5) В интервалахnπ < х < π/2 + nπфункция  у = tg х положительна,  а в интервалах—  π/2 + nπ< х < nπотрицательна. При х = nπ функция у = tg x обращается в нуль Поэтому эти значения аргумента (0; ± π; ± 2π; ±3π; ..) служат нулями функции у = tg x.6)  В  интервалах—  π/2 + nπ < х <  π/2 + nπ функция монотонно возрастает. Можно сказать, что в любом интервале, в котором функция у = tg x определена, она является монотонно возрастающей.Однако ошибочно было бы считать, что функция у = tg x монотонно возрастает всюду. Так, например ,    π/4 + π/2 > π/2 .  Однако   tg (π/4 + π/2) < tg π/4 . Это   объясняется   тем,   что   в    интервал,   соединяющий точки х =π/4 и х = π/4 + π/2, попадает значение х = π/2, при котором функция у = tg x не определена.Для построения графика функции у = ctg x следует воспользоваться   тождествомctg x = — tg (x + π/2)Оно указывает на следующий порядок построения графика:1)  тангенсоиду у = tg x  нужно сдвинуть влево по оси абсцисс на расстояние π/2;2)  полученную кривую отобразить  симметрично относительно оси абсцисс.В результате такого построения получается кривая, представленная на рисунке. Эту кривую иногда называют котангенсоидой.Котангенсоида хорошо иллюстрирует все основные свойства функции у = ctg х. Предлагаем учащимся сформулировать эти свойства и дать им графическую интерпретацию.Упражнения1.Используя графики функций у = tg x и у = ctg х, найти наименьшие положительные корни уравнений:a)  tg х = —3;   б)  tg х = 2;     в) ctg х = —3;    г) ctg x = 2.2.  Используя графики функций у = tg x и у = ctg х, найти все  корни   уравнений:a) tg х = \/3;   б) ctg x = 1 / \/ 3

 

4,4(55 оценок)
Ответ:
Danil7070
Danil7070
12.05.2020
Можно решить двумя Через тригонометрический круг;
2)Аналитически
По-моему мнению, решая неравенства, самый рациональный через тригонометрический круг. Но мы разберем сразу 2 варианта.

№1. Тригонометрический круг
Как мы помним, на круге отсчитываем синус по игреку. Ищем значение 1/2, и проводим хорду так, чтобы она проходила через точку 1/2 (по игреку, напомню еще раз). То, что ниже этой хорды и будут решениями неравенства. Нетрудно сообразить, что sin30 градусов даст 1/2. Но и sin150 градусов даст 1/2. Таким образом, отсюда вытекает двойное неравенство:

150<sinx<30

P.S. Все, что я обвел желтым - это решение данного неравенства (рис. 1)

№2. Аналитический
Рассмотрим уравнение:

Решая уравнение, получим:

Чтобы неравенство было верным, нужно, чтобы угол альфа был меньше, или равен корням уравнения sinx=1/2.
Опять же, отсюда вытекает двойное неравенство:

150<sinx<30
4,6(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ