Нужно само решение!
1. Розв'яжіть нерівність sinx >0 :
Відповідь: (2πn; π+2πn), n∊Z
2. cosx >-1/2
Відповідь: (-2π/3+2πn;2π/3+2πn), n∊Z
3. tgx<√3
Відповідь: (-π/2 +πn; π/3+πn)
4. sin2(x) < 1/2 (застосуйте формулу пониження степеня)
Відповідь: (-π/4+πn;π/4+πn), n∊Z
5. 2 sin(x/2 - π/4) ≥ -1
Відповідь: [π/6 + 4πn;17π/6 + 4πn], n∊Z
6. 4sin(x/2)cos(x/2)≤ -1
Відповідь: [-5π/6+2πn;-π/6+2πn], n∊Z
7. sin3xcosx-cos3xsinx ≤ 1/2 (застосуйте формули додавання для тригонометричних функцій)
Відповідь: [-7π/12 + πn;π/12 + πn], n∊Z
y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Подробнее - на -
Объяснение:
двойка при возведении в степень имеет тенденцию повторять порядок последних чисел. Так
2^1=2
2^2=4
2^3=8
2^4=16
Порядок последних цифр - 2,4,8,6, где 6 - каждая четвертая, 8 - третья из каждых четырех и так далее.
Ближайшее к 1047 число целиком делимое на 4 - 1048. То есть у двойки в 1048 степени последняя цифра будет 6. Отсюда и ответ: последняя цифра числа, равного 2^1047 - это 8.