М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maxim2006c
maxim2006c
25.05.2022 04:32 •  Алгебра

№294.с заданных составьте квадратное уравнение: 1)-7 и -2 3)4/3 и 2 5)4/7 и 4/7 7)корень из 2 и корень из 5 9)-корень из 7 и корень из 2 с решением)

👇
Ответ:
antonlutsenko1
antonlutsenko1
25.05.2022

1)x^2+9x+14=0

3)x^2-10x/3+8/3=0

5)x^2-8/7+16/49=0

7)x^2-(V2+V5)x+V10=0

9)x^2-(V2-V7)x-V14=0



4,6(89 оценок)
Открыть все ответы
Ответ:
denisstar756
denisstar756
25.05.2022
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).

Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:

S = vt ;

Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:

\overline{r} = \overline{v}t ;

Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:

v = v_o + at , либо в векторном виде: \overline{v} = \overline{v_o} + \overline{a} t ;

Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:

S = v_o t + \frac{at^2}{2} либо в векторном виде: \overline{r} = \overline{v_o} t + \frac{ \overline{a} t^2}{2} ;

Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:

a = \frac{F_\Sigma}{m} либо в векторном виде: \overline{a} = \frac{ \overline{F}_\Sigma }{m} ;

Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:

\Delta \varphi = \omega t ;

Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:

\Delta x = A \cos{ ( \omega t + \varphi_o ) } ;

Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:

v = - A \omega \cos{ ( \omega t + \varphi_o ) } ;

Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:

a = - A \omega^2 \cos{ ( \omega t + \varphi_o ) } ;

Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:

Q^o = C \Delta t , где C = cm , либо в удельном виде: Q^o = c m \Delta t ;

Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:

Q^o = \lambda m ;

Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:

Q^o = L m ;

Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:

Q^o = q m ;

Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:

PV = \frac{m}{ \mu } RT ;

Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:

I = \frac{ \Delta q }{ \Delta t } ;

Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:

m F_\Phi z = I \Delta t , где F_\Phi = N_A e ;

Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:

I = \frac{U}{R} ;

Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:

Q^o = UQ = UI \Delta t = I^2 R \Delta t = \frac{ U^2 }{R} \Delta t ,

либо в мощностном виде: P = UI = I^2 R = \frac{ U^2 }{R} ;

Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:

F_A = B I \Delta L \sin{ \varphi } ;

Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:

F_\Lambda = B v q \sin{ \varphi } ;

Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:

U_{ind} = -\Phi'_t .
4,8(18 оценок)
Ответ:
suslik030715
suslik030715
25.05.2022

Примечание:  в  скобках  пишу менее  вероятные ответы .

1. 7   (  8  c   учетом варианта , что  никто не вышел из лифта)

2. 330  ( 660 с учетом порядка выхода ,  6  без  учета этажей ,   12    без  учета этажей , но  с учетом порядка выхода)

3. 990

4. 1331  ( 1716 - c  учетом  порядка выхода)

А  что верно на самом  деле , тут уже вопрос не ко мне , а к бестолковым составителям этого задания.

Объяснение:

1. пассажиры могут выйти на одном и том же этаже (порядок выхода не имеет значения);

Пусть в лифте будет только 1 пассажир .   Он  может выйти либо не выйти из лифта .  То  есть 2 варианта .   Пусть будет  2 пассажира в лифте .  Поскольку второй тоже может выйти , а может не  выйти , то общее число  вариантов 2*2= 4  .    Аналогично  для 3 пассажиров ,число вариантов :  4*2 =2^3 = 8.     Примечание :   для  n человек в  лифте , число равно :N= 2^n.

Но тут есть  непонятный момент в условии.  Возможен ли такой вариант , что  все пассажиры не  вышли из лифта?  Если возможен ,  то ответ 8 ,  а вот  если невозможен ,то ответ 7.  Как  всегда авторы забыли прояснить главное.

2. два человека могут выйти на одном этаже, а третий – на другом;

Найдем  сначала  общее  число пассажирам выйти  на двух этажах из 11   ( на первом этаже выйти не могут).

Это  число равно :   C (11 ,2)=11!/(2!*9!) =10*11/2=55    - сочетания из 11   этажей по два этажа.

В каждом из выхода людей по этажам , на  первом из них может выйти какие-то два человека , а на  втором третий оставшийся.

Или наоборот  на первом  может выйти один человек ,  а на втором два оставшихся.  Таким образом ,общее число

2*C(3,2) =  2*3!/(2!*1!)  = 6

Тогда общее число вариантов :

N =   6*55 =330

Но  опять же неясно , что имели  ввиду авторы.   Нужно ли учитывать на каком этаже выходят люди?  Если да , то ответ 330.  Если  же люди должны выходить на фиксированных этажах , то ответ : 6.

Более того ,  я так и не  понял важен ли порядок выхода  на

этажах во втором задании?  Если важен , то  нужно еще умножить на 2.

То ответ будет: 660.    

3. люди могут выйти на разных этажах;

Поскольку все  люди должны выйти на разных этажах ,  то  на каждом этаже может выйти только по одному человеку.

Общее число выбрать 3 этажа для выхода равно :

C (11,3)  =  11!/(3!*8!)  = 9*10*11/(2*3) =  3*5*11= 55*3=165

Общее число как пассажиры  могут выйти на этих 3  этажах равно :  3! =6.

Тогда число равно :  6*165 = 990

4. пассажиры могут выйти из лифта

Тут нужно рассмотреть все варианты.

Если на одном этаже выходит по одному человеку , то число  вариантов : N1 =990.

Если на одном выходит два человека , а на другом третий оставшийся , то  число вариантов : 330 - без  учета порядка выхода и 660 - с учетом порядка выхода.

Осталось рассмотреть  вариант , когда все 3 человека выходят на фиксированном этаже :

Без  учета порядка выхода таких вариантов 11 , а с  учетом порядка выхода :   3!*11 = 66.

Тогда общее число  вариантов  без  учета порядка выхода :

990 +330 + 11 =1331

С учетом порядка выхода :

990 +660 +66 = 1716

Результат :  1331     можно получить другим

Определенный человек может выйти на 11 различных этажах .   Всего  у нас   3 человека , поэтому  рассуждая как в первом  задании , получаем , что общее число

N=11^3 = 1331  -  это  значит , что мы решили задачу правильно.

4,5(11 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ