\[x_0=-\frac{b}{2a}=-\frac{0}{2\cdot \left(-1\right)}=0\]
Подставим найденную абсциссу в уравнение функции и найдем ее ординату:
\[y_0=-0^2+4=4\]
Итак, вершиной параболы будет точка (0; 4).
Далее нужно найти точки, которые принадлежат графику параболы. Сделать это легко. Берем несколько произвольных значений переменной х и вычисляем для них значение переменной у. Полученные пары чисел будут координатами искомых точек.
х = 1: y\left(1\right)=-1^2+4=3 —точка с координатами (1; 3).
х = 2: y\left(2\right)=-2^2+4=0 —точка с координатами (2; 0).
х = —1: y\left(-1\right)=-{\left(-1\right)}^2+4=3 —точка с координатами (—1; 3).
х = —2: y\left(-2\right)=-{\left(-2\right)}^2+4=0 —точка с координатами (—2; 0). Нанесем найденные точки на координатную плоскость и начертим график функции y = —x^2 + 4
(Рисуешь точку и проводишь линии в право ,влево ,вперед и назад.Расставляешь числа ,рисуешь дугу с самого низа до верха по второе число и спускаешься вниз)Думаю понятно объяснила.
не может, Решение:
пусть первые последовательные натуральные числа это
х, х+1,х+2, а следующие за ними это числа х+3, х+4, х+5,
тогда составим систему уравнений:
х+ (х+1)+(х+2)=а
(х+3)+(х+4)+(х+5)=b, упростим:
3x+3=a
3x+12=b, вычтем из нижнего уравнения верхнее, получим:
9=b-a, теперь надо понять, может ли ab равняться 111 111 111 1, или подставив вместо b значение a+9, может ли a(a+9) равняться 111 111 111 1,
есть два варианта, число а четное и число а нечетное,
если а четное, то а плюс 9 будет нечетным, а значит их произведение всегда четно и равняться нечетному числу 111 111 111 1 не может, второй вариант это когда число а нечетное, тогда а плюс девять будет четным, а их произведение будет четным, а значит тоже не может равняться нечетному числу 111 111 111 1
ответ: не может
Объяснение:
4+2p-6=0
2p=2
p=1
D=1+24=25
x =2
x =-3