М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nadyayde
nadyayde
08.12.2020 03:49 •  Алгебра

Найти значение функции y(x) =15x-10соответствующее аргументам:x=15, x=-20,x=6,05,x=-9,8,

👇
Ответ:
mariyamariya201
mariyamariya201
08.12.2020

y(-20) = -310

y(6.05) = 80.75

y(9,8) = -157

Объяснение:

Вместо x в формуле y(x) просто вставляй то значение которое дано.

НАПРИМЕР

в 1:

15 * (-20) - 10 = -300 - 10 = -310

в 2:

15 * (6.05) - 10 = 90.75 - 10 = 80.75

в 3:

15 * (-9.8) - 10 = -147 - 10 = -157

4,8(34 оценок)
Ответ:
Lenakorzyn
Lenakorzyn
08.12.2020

у(15)=15×15-10=215

у(-20)=15×(-20)-10=-310

у(6,05)=15×(6,05)-10=80,75

у(-9,8)=15×(-9,8)-10=-157

4,4(56 оценок)
Открыть все ответы
Ответ:
KMasha11
KMasha11
08.12.2020

(см. объяснение)

Объяснение:

79:

\left\{\begin{array}{c}x^2+y^2=1\\x+y=a\end{array}\right;

Выразим y из второй строки системы:

y=a-x

Подставим его в первую строку системы:

x^2+(a-x)^2=1\\2x^2-2ax+a^2-1=0

Берем дискриминант, деленный на четыре, и приравниваем его к нулю:

\dfrac{D}{4}=a^2-2(a^2-1)=-a^2+2\\-a^2+2=0\\a=\pm\sqrt{2}

Итого при a=\pm\sqrt{2} исходная система уравнений имеет ровно одно решение.

80:

\left\{\begin{array}{c}(x-y)^2=6a-14\\x^2+y^2=3(a+2)\end{array}\right;

В первой строке системы имеем график двух параллельных прямых, равноудаленных от прямой y=x при a\dfrac{7}{3}. При a=\dfrac{7}{3} графиком будет прямая

Во второй строке системы имеем уравнение окружности с радиусом \sqrt{3(a+2)} и центром в точке (0;\;0).

Тогда, при a\dfrac{7}{3} каждая прямая пересекает окружность столько же раз, сколько другая.

Очевидно, что сразу возьмем в ответ a=\dfrac{7}{3}.

Покажем, что случая, когда обе прямые касаются окружности, не существует.

По формуле расстояния от точки до прямой этот случай можно описать так:

\sqrt{3(a+2)}=\dfrac{\sqrt{6a-14}}{\sqrt{2}},\;\;3(a+2)=3a-7,\;\;6=-7, неверно.

Итого при a=\dfrac{7}{3} исходная система уравнений имеет ровно два различных решения.

81:

\left\{\begin{array}{c}3x-ay=1\\6x+4y=2\end{array}\right;

Значение a=0 не подходит.

При a\ne0:

\left\{\begin{array}{c}y=\dfrac{3}{a}x-\dfrac{1}{a}\\\\y=-\dfrac{3}{2}x+\dfrac{1}{2}\end{array}\right;

Бусконечное число решений будет, если коэффициенты угла наклона и смещения прямых совпадают.

\left\{\begin{array}{c}\dfrac{3}{a}=-\dfrac{3}{2}\\\\-\dfrac{1}{a}=\dfrac{1}{2}\end{array}\right,\;\;a=-2

Итого при a=-2 исходная система имеет бесконечное число решений.

Задание выполнено!

4,7(15 оценок)
Ответ:
Danelpos
Danelpos
08.12.2020

(см. объяснение)

Объяснение:

f(x)=8x^3-3(3a+1)x^2+6(a-2)x+5

Берем первую производную:

f'(x)=24x^2-6(3a+1)x+6(a-2)

По условию нужно, чтобы имелся строгий экстремум.

Тогда берем вторую производную:

f''(x)=48x-6(3a+1)

Перейдем к системе, чтобы с ее найти значения параметра, которые нужно исключить:

\left\{\begin{array}{c}24x^2-6(3a+1)x+6(a-2)=0\\48x-6(3a+1)=0\end{array}\right,\\\\\left\{\begin{array}{c}4x^2-(3a+1)x+a-2=0\\8x-3a-1=0\end{array}\right;

Система не имеет решений.

Вернемся к первой производной:

f'(x)=24x^2-6(3a+1)x+6(a-2)

В таких случаях выгодно строить схематичную параболу, описывая каждое интересующее нас расположение на языке математики.

Учитывая, что  D=9a^2-10a+330, получим:

(см. прикрпепленный файл)

Запишем систему:

\left\{\begin{array}{c}f'(0)0\\x_00\end{array}\right;

То есть нужно решить:

\left\{\begin{array}{c}a-20\\3a-10\end{array}\right,\;\;a\in\left(2;\; +\infty\right)

Итого при a\in\left(2;\; +\infty\right) точки экстремума функции принадлежат промежутку (0;\; +\infty).

Задание выполнено!


11 клас, задача з параметром
4,7(7 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ