перепишем неравенство в виде или ищем критические точки
в порядке возростания {-5}; {0} ; {} ; {2} они разбивают числовую пряммую на пять промежутков на которых функция задающая л.ч неравенства сохраняет знак
при єто так как у нас множители вида (x-A)^n, где n- нечетное число (а в данном случае для каждого из четырех множителей то переходе через критическую точку функция меняет знак на противоположный
найдем знак функции для какой нибудь точки з интервала напр. для 1000 (важен знак ---а не само значение) значит знак на промежутке "+" переходим через точку {2} и получаем что на интервале знак "-" переходим через точку и получаем что на интервале знак "+" переходим через точку {0} и получаем что на интервале знак "-" переходим через точку {-5} и получаем что на интервале знак "+"
обьединяем получаем ответ: (включительно так как знак больше РАВНО 0 --а множителей в знаменателе на исключение нет)
y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении