Ищется также, как локальные минимумы и максимумы. 1) Находим точки, где производная от функции не определена. 2) Находим точки, где производная от функции равна 0. 3) Вычисляем значения функции во всех этих точках. 4) Сравниваем значения и находим самое большое и самое маленькое.
Примеры: 1) y = |x|. При x < 0 y ' = -1; при x > 0 y ' = 1 При x = 0 производная не определена. y(0) = 0. Это глобальный минимум. 2) y = 18x^4 - 24x^3 - x^2 + 2x + 1 Производная y ' = 72x^3 - 72x^2 - 2x + 2 = 2(x - 1)(36x^2 - 1) = 2(x - 1)(6x - 1)(6x + 1) = 0 x1 = 1; y(1) = 18 - 24 - 1 + 2 + 1 = -4 - минимум x2 = -1/6; y(-1/6) = 18/6^4 + 24/6^3 - 1/36 - 2/6 + 1 ~ 0,764 x3 = 1/6; y(1/6) = 18/6^4 - 24/6^3 - 1/36 + 2/6 + 1 ~ 1,2083 - максимум 3) y = x*sin x Производная y ' = sin x + x*cos x = 0 Периодическая функция, решения такие: x ~ -11; -8; -5; -2; 0; 2; 5; 8; 11; ... Значения: y(+-11) ~ 2; y(+-8) ~ 1,1; y(+-5) ~ 0,43; y(+-2) ~ 1,8; y(0) = 0 Кажется, здесь глобальных минимума и максимума нет. Чем больше х по модулю, тем больше у.
ответ:Пусть х-скорость катера в стоячей воде,
тогда скорость катера по течению равна х+2 км/ч,
а скорость катера против течения равна х-2 км/ч.
На путь по течению катер затратил 40/(х+2) часа,
а на путь против течения 6/(х-2) часа.
По условию на весь путь затрачено 3 часа.
Составим уравнение:
40/(х+2) + 6/(х-2) =3|*(x+2)(x-2)
40(x-2)+6(x+2)=3(x^2-4)
40x-80+6x+12=3x^2-12
46x-68-3x^2+12=0|*(-1)
3x^2-46x+56=0
D=2116-672=1444
x1=(46+38):6=14 (км/ч)
х2=(46-38):6=1 1/3 (км/ч) - проверкой устанавливаем, что этот корень не подходит 1 1/3-2<0
ответ: скорость катера в стоячей воде равна 14 км/ч