Большое количество задач такого типа решаются при формулы Ньютона-Лейбница:
Поэтому, во-первых, нужно найти и
- абсциссы точек пересечения графиков функций. Для этого нужно решить несложное уравнение:
А так как есть целых три точки пересечения, то придется считать два интеграла: первый - от до
(как результат приравнивания функций:
), а второй - от
до
(здесь уже
):
Значит, площадь искомой фигуры (состоящей из нескольких других фигур) равна или
(каких-то квадратных единиц измерения), если перевести в десятичную дробь.
Наибольшая прибыль = 7 денежных единиц
Объяснение:
Пусть x - количество произведенной продукции П1, а y - количество произведенной продукции П2. Тогда цель задачи максимизировать значение (
) при условии ограничений на сырье и того, что нам надо произвести хоть что-то: 
Эти четыре неравенства задают заштрихованный под прямыми
четырехугольник в первом квадранте.
Значение максимизируемого выражения x+2y есть линии уровня z=x+2y, а так как градиент функции z(x,y) равный grad z = {1;2} направлен в сторону первого квадранта, то значения z будут тем больше, чем дальше мы продвинем линию уровня в первый квадрант. С учетом ограничений наибольшее значение изготовленной продукции придется на пересечение прямых, которые задают четырехугольник:
. Точка пересечения (3;2). Значит, наибольшая прибыль, которую можно получить 3+2*2=7.