Объяснение:
(n-2)/(n-3)= (n-2-1+1)/(n-3)= (n-3+1)/(n-3)=((n-3)/(n-3))+(1/(n-3))
=1+(1/(n-3))
(n-2)/(n-3)= 1+(1/(n-3))
для того чтобы это выражение было целым числом
надо чтобы 1/(n-3) было целым числом
рассмотрим возможные случаи
1) при n≤2 значение 1/(n-3) будет дробным числом <1
2) при n=3 дробь не существует
при n>4 значение 1/(n-3) будет дробным числом >1
3) остается n=2 и n=4
при n=2 (n-2)/(n-3)=(2-2)/(2-3)=0 значение дроби целое число
при n=4 (4-2)/(4-3)=2 значение дроби целое число
=>
Сумма всех целых чисел n , для которых дробь n-2/n-3 является целым числом 2+4=6
Так как ты не предоставил задачки и варианты ответов к части А, я предположу, что тебе нужен ответ на В1.
Пусть сторона квадрата равна а, тогда длина прямоугольника равна а+8, а ширина прямоугольника равна а-8. Получаем, что площадь квадрата равна а^2, а площадь прямоугольника равна (а+8)(а-8).
Sпр=(а-8)(а+8)=а^2-8^2=a^2-64
Так как квадрат равен a^2, то его площадь больше прямоугольника на 64 см.
ответ: Площадь квадрата больше площади прямоугольника на 64 см.
Объяснение:
Применяется формула разности квадратов. а^2-b^2=(a-b)(a+b)