Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
1). что-то не то с условием: из четырех чисел нельзя составить пятизначное число, не имеющие в составе повторяющихся цифр.
2). по признаку делимости на 5: чтобы число делилось на 5, надо, чтоб оно оканчивалось на 0 или 5. Т.к. данные цифры не используются, то числа, делящиеся на 5 составить нельзя.
по признаку делимости на 4: чтобы число делилось на 4, надо, чтоб число составленное из двух последних цифр в том же порядке делилось на 4. из данных цифр можно составить только числа оканчивающиеся на 24, 72, 32.
разберем вариант с 24. тогда с первой и второй цифрами числа так: т.к. цифры не повторяются 2 и 4 использовать нельзя. тогда на первое место в числе можно поставить любую из двух оставшихся цифр (таких 2), а на второе место уже оставшуюся цифру...в результате количество требующихся чисел 2*1=2.
аналогично получим 2 числа оканчивающиеся на 32 и 2 числа оканчивающиеся на 72.
ответ: а) 6 чисел. б) ни одного
3). т.к. учебники алгебры могут стоять только рядом, то возьмем их как один объект, тогда объектов, которые надо расставить у нас 4 (причем 3 из них одного вида - учебники геометрии (я так понимаю нет разницы какой из них будет стоять раньше, какой позже)). существует формула для перестановок с повторениями:
где n - общее кол-во объектов, а и т.д. - кол-во объектов каждого вида
получаем
4). Чисел которые начинаются с 2 - можно составить два. чисел, где 2 стоит на втором месте - тоже два, где на третьем - два. аналогично для 4 и 6.
теперь найдем сумму всех таких чисел: (2*100+2*10+2)*2+(4*100+4*10+4)*2+(6*100+6*10+6)*2