Теперь понятно, что можно ввести замену и продолжать решение уже дробно-рационального уравнения.
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём. Мы помним формулу сокращённого умножения:
Отсюда я могу легко выразить сумму квадратов:
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y. Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его. Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену:
После замены получаем:
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой) - этот корень не удовлетворяет нашему уравнению. Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
Отсюда
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
A(0 ;-4) ,B(3;0) ,C(0;6).Пусть AD ,биссектриса угла A.
Можно решать разными
k = |CD|/|BD| =|AC|/|AB| =10/2 =2 . x(D) =(x(C) +k*x(B))/(1+k) =(0+2*3)/(1+2) =2. y(D)=(y(C) +k*y(B))/(1+k) =(6+2*0)/(1+2) =2. D(2;2). Уравнения прямой a , содержащей биссектрису AD будет : y -y(A) =(y(D) -y(A))/ (x(D) -x(A)) *(x- x(A)) ; y+ 4 = 3x ⇔3x -y -4 =0 ⇔ (3x -y -4)/√(3²+1²) =0 . (3x -y -4)/√10 =0 ; расстояние от точки (вершины) С(0 ;6) до прямой a d= |3*0-6-4) /√10 =√10 . * * * * * * * можно решать очень элементарно определить высоту Hc треугольника ACD. |AC| =10 ; |AB| =5 ;|BC| =3√5 * * * * * * * Из вершины C проводить прямую ( составить уравнение) b ⊥ AD и найти точку пересечения с прямой a y - y(c) = -(1/Ka)(x - x(C)) ⇔y -6 = -(1/3)x. { 3x -y -4 =0 ; y -6 = -(1/3)x.
ответ:f(3)~12
f(0)=0
Объяснение: Вместо х подставляем 3
Получаем f(3)=5*3-1/3*3²
Считаем
f(3)~12
Далее подставляем 0
f(0)=5*0-1/3*0²=0