М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Викка23
Викка23
28.01.2022 07:56 •  Алгебра

выполните значения выражения и возведите в степень


выполните значения выражения и возведите в степень

👇
Открыть все ответы
Ответ:
ggez2
ggez2
28.01.2022
Чтобы привести дроби к наименьшему общему знаменателю необходимо найти наименьшее общее кратное. Для этого:
 
1. Выпишем числа из знаменателей исходных дробей и разложим каждое из них на простые множители. 
60 = 2 * 2 * 3 * 5
540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5

Вычеркиваем все множители для 540 и 20, которые есть в разложении 60. Выделим их жирным:

540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5

2. Выписываем все множители, входящие в первое число (60):

 2 * 2 * 3 * 5

3. Домножаем на недостающие множители из разложений остальных чисел (это числа, которые не выделены жирным):

 2 * 2 * 3 * 5 * 3 * 3 = 540

Таким образом, наименьший общий знаменатель = 540. Приведем наши дроби к наименьшему общему знаменателю:

\frac{7}{60} = \frac{7*9}{60*9} = \frac{63}{540} \\\\
 \frac{13}{540} \\\\
 \frac{9}{20} = \frac{27*9}{20*27} = \frac{243}{540} \\\\
4,6(91 оценок)
Ответ:
Salkin355
Salkin355
28.01.2022

ответ: 1) -1; 2) 1.

Объяснение:

1) При x⇒0 выражение в скобках представляет собой неопределённость вида ∞-∞. Приводя обе дроби к общему знаменателю, получаем в скобках выражение -sin²(x)/[x*(x+sin²(x))]=-sin(x)/x*sin(x)/[x+sin²(x)]. Предел первого множителя есть ни что иное, как взятый со знаком "минус" первый замечательный предел, поэтому предел этого множителя равен -1. Ко второму множителю sin(x)/[x+sin²(x)] применим правило Лопиталя. Находя производные числителя и знаменателя, получаем выражение cos(x)/[1+2*sin(x)*cos(x)]=cos(x)/[1+sin(2*x)]. Предел этого выражения при x⇒0 равен 1, поэтому искомый предел равен -1*1=-1.  

2) Выражение, предел которого нужно найти, при x⇒+0 представляет собой неопределённость вида ∞⁰. Так как при x⇒0 бесконечно малые величины sin(x) и x эквивалентны, то при вычислении предела можно заменить одну на другую. В данном случае заменим sin(x) на x, и тогда выражение, предел которого нужно найти, примет вид y=(1/x)ˣ. Взяв натуральный логарифм от этого выражения, получим выражение z=x*ln(1/x)=ln(1/x)/[1/x]. Полагая теперь 1/x=t, получим выражение z=ln(t)/t. Так как при x⇒0+ t⇒∞, то это выражение представляет собой неопределённость вида ∞/∞, для раскрытия которой применим правило Лопиталя. Производная числителя [ln(t)]'=1/t, производная знаменателя t'=1, поэтому предел выражения lim[ln(t)/t]=lim(z) при t⇒∞ равен 0/1=0. А так как z=ln(y), то lim(z)=ln[lim(y)], откуда lim(y)=e^lim(z)=e^0=1.    

4,4(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ