Пусть v1 км/ч- скорость первого автомобиля, v2 км/ч - второго, t - время от старта автомобилей до их встречи. Тогда первый автомобиль находился в пути время t1=t+1,6 ч, а второй - время t2=t+2,5 ч, поэтому v1*(t+1,6)=v2*(t+2,5)=180. Кроме того, v1*t+v2*t=180. Получаем систему уравнений:
v1*(t+1,6)=180 v2*(t+2,5)=180 v1*t+v2*t=180
Из первого уравнения находим v1=180/(t+1,6), из второго - v2=180/(t+2,5). Подставляя эти выражения в третье уравнение, получаем уравнение:
180*t/(t+1,6)+180*t/(t+2,5)=180, или t/(t+1,6)+t/(t+2,5)=1.Отсюда следует уравнение t*(t+2,5)+t*(t+1,6)=t²+4,1*t+4, или 2*t²=t²+4. Тогда t²=4 и t=√4=2 ч. Отсюда v1=180/(2+1,6)=50 км/ч и v2=180/(2+2,5)=40 км/ч. ответ: 50 и 40 км/ч.
(5x + 4)/3x(x + 3) + (6 - 7x)/x(3 - x) = (3x + 1)/(3 - x)(3 + x)
ОДЗ:
x ≠ 0
x≠ -3
x≠ 3
Умножим всё уравнение на 3x(3 - x)(x + 3)
(5x + 4)(3 - x) + 3(6 - 7x)(x + 3) = 3x(3x + 1)
15x - 5x²+ 12 - 4x + 3(6x + 18 - 7x² - 21x) = 9x² + 3x
-14x² + 8x + 12 + 3(-7x² - 15x + 18) = 0
-14x² + 8x + 12 - 21x² - 45x + 54 = 0
-35x² - 37x + 66 = 0
35x² + 37x - 66 = 0
D = 37² + 4·66·35 = 10609 = 103²
x₁ = (-37 + 103)/70 = 66/70 = 33/35
x₂ = (-37 - 103)/70 = -140/70 = -2
ответ: x = -2; 33/5.