9 и 18 часов
Определим, что первому крану понадобится х часов, чтобы самостоятельно разгрузить баржу, тогда второму понадобиться (х + 9) часов. Весь объём работы обозначим 1 и запишем производительность труда каждого крана и их общую.
1 / х - производительность первого крана;
1 / (х + 9) - производительность второго крана;
1 / 6 - общая производительность.
Составим уравнение:
1 / х + 1 / (х + 9) = 1 / 6
6х + 54 + 6х = х² + 9x
x² - 3x - 54 = 0
D = 225, х1 = -6, х2 = 9.
Отрицательный корень нам не подходит.
х = 9 часов - время работы первого крана самостоятельно;
х +9 = 9 + 9 = 18 часов - время работы второго крана самостоятельно.
ответ: 9 и 18 часов.
Объяснение:
Пусть во второй емкости "х" л воды. В первой емкости на 3 л воды больше, значит в первой емкости "х+3" л воды. Если из первой емкости перелить во вторую 15 л воды, то в первой емкости станет "х+3-15" л воды, а во второй станет "х+15" л воды. Зная, что после этого, во второй емкости будет воды в 2 раза больше, составляем уравнение. 2 * (х + 3 - 15) = х + 15 ; 2 * (х - 6 ) = х + 15 ; 2х - 12 = х + 15 ; 2х - х = 15 + 12 ; х = 27 (л) во второй емкости. 1) х + 3 = 27 + 3 = 30 (л) в первой емкости.