Туристы намеченный путь за три дня.в первый день они намеченного маршрута, во второй-на 3 км больше,чем в первый, а в третий - оставшиеся 21 км. какова длина маршрута? решить уравнением
Решение 1) y = 2*(x³ )+ 9*(x²) - 24*x - 7 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 6x² + 18x - 24 Находим нули функции. Для этого приравниваем производную к нулю 6x² + 18x - 24 = 0 Откуда: x₁ = - 4 x₂ = 1 (-∞ ;-4) f'(x) > 0 функция возрастает (-4; 1) f'(x) < 0 функция убывает (1; +∞) f'(x) > 0 функция возрастает В окрестности точки x = - 4 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 4 - точка максимума. В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума. 2) Найти стационарные точки функции y = cos 4x-2x*√3 Стационарные точки функции - это точки (значения аргумента), в которых производная функции первого порядка обращается в нуль. y` = ( cos 4x-2x*√3)` = - 4sin4x - 2√3 - 4sin4x - 2√3 = 0 4sin4x = - 2√3 sin4x = - √3/2 4x = (-1)^narcsin(-√3/2) + πk, k ∈Z 4x = (-1)^(n+1)arcsin(√3/2) + πk, k ∈Z 4x = (-1)^(n+1)*(π/3) + πk, k ∈Z x = (-1)^(n+1)*(π/12) + πk/4, k ∈Z
Наш план действий: 1) ищем производную 2) приравниваем её к нулю, решаем уравнение ( ищем критические точки) 3) Смотрим: какие из них попали в указанный промежуток. 4) Ищем значения данной функции в этих точках и на концах данного промежутка. 5) пишем ответ Начали? 1) у'= 3x² -18x +24 2) 3x² - 18x + 24 -0 x² - 6x +8 = 0 По т. Виета х = 2 и 4 3) в наш промежуток попало число 2 4) х = 2 у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19 х = -1 у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35 х = 3 у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17 5) max y = 19 [-1; 3]
1 день-0,35х км
2день-0,35х+3км
3день-21км
х=0,35х+0,35х+3+21
х-0,7х=24
0,3х=24
х=24:0,3=80км-весь путь