Сумма чисел от 1 до N вычисляется по формуле: S=N*(N+1)/2 (Сумма арифметической прогрессии) Из того что не одно из слагаемых от 1 до N не делиться на простое число p, то очевидно что p нет среди натуральных чисел от 1 до N. То есть p>N. Из условия делимости суммы можно записать что: N*(N+1)/2=p*k. N*(N+1)=2*p*k. То есть левая часть кратна p. По условию все слагаемые в сумме ,а значит и N не делятся на p. Тогда в силу того ,что число p простое очевидно что N+1 делиться на p. А значит: p≤N+1. То есть справедливо двойное неравенство: N<p≤N+1. Отсюда очевидно , что p=N+1. То есть 241<p<256. Только одно число их этого интервала простое. Это число 251. А значит абсолютно очевидно что N=250 ответ:250
Сумма чисел от 1 до N вычисляется по формуле: S=N*(N+1)/2 (Сумма арифметической прогрессии) Из того что не одно из слагаемых от 1 до N не делиться на простое число p, то очевидно что p нет среди натуральных чисел от 1 до N. То есть p>N. Из условия делимости суммы можно записать что: N*(N+1)/2=p*k. N*(N+1)=2*p*k. То есть левая часть кратна p. По условию все слагаемые в сумме ,а значит и N не делятся на p. Тогда в силу того ,что число p простое очевидно что N+1 делиться на p. А значит: p≤N+1. То есть справедливо двойное неравенство: N<p≤N+1. Отсюда очевидно , что p=N+1. То есть 241<p<256. Только одно число их этого интервала простое. Это число 251. А значит абсолютно очевидно что N=250 ответ:250
1. одз х≠-2; х²=10-3х; х²+3х-10=0; по Виету х=-5; х=2. оба входят в одз
ответ -5; 2
2. одз х≠≠5; х²+5х+7х+35-2х²+50=0; х²+12х-85=0; по Виету х=17; х=-5- не входит в одз.
ответ х=17