Расстояние между городами 90 км, машины встретились через 1 час. Следовательно, за 1 час они путь, равный 90 км, и этот путь - сумма их скоростей. Пусть скорость автомобиля из А равна х Тогда скорость автомобиля из В равна 90-х. Время первого 90:х Время второго 90:(90-х) Следует привести единицы измерения в соответствие ( расстояние дано в км, скорость выражаем в км/ч, время тоже нужно выразить в часах) 27 минут=27/60 часа=9/20 часа По условию задачи время автомобиля из А больше на 9/20 часа Составим уравнение: 90:х -90:(90-х)=9/20 Для удобства сократим обе части уравнения на 9: 10:х-10:(90-х)=1/20 После приведения к общему знаменателю и избавления от дробей получим: 20·10·(90-х)-20·10х=х(90-х) 18000-200х -200х=90х-х² х²-90х-400х+18000=0 х²-490 х+18000=0 Решив квадратное уравнение, получим два корня: х1=450 (не подходит) х2=40 Скорость автомобиля из А равна 40км/ч Скорость автомобиля из В равна 90-40=50 км/ч
У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного которая должна выражать дату (в каком-то неизвестном представлении).
Обозначим второе число (дата), как тогда неизвестное число должно выглядеть, как: и должно выполняться равенство: или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго и приходящая в третий разряд:
– возможная добавочная единица, уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант: здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г. – дата 15/04/86 г. – дата 21/04/47 г. – дата 24/04/77 г. – дата 24/04/38 г.
------------------
Рассмотрим второй вариант: здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда: