1) Пусть 2а - первое четное число, тогда 2а+2 - второе число и 2а+4 - третье число. (2а)² - квадрат первого числа, (2а+2)² - квадрат второго числа, (2а+4)² - квадрат третьего числа. По условию задачи сумма квадратов этих чисел равна 2360. Составляем уравнение: (2а)²+(2а+2)²+(2а+4)²=2360; 4а²+4a²+8a+4+4a²+16a+16=2360; 12a²+24a+20=2360; 12a²+24a-2340=0; | : 12 a²+2a-195=0; D=4+780=784; a1=(-2-28)/2=-30/2=-15; a2=(-2+28)/2=26/2=13. По условию задачи числа натуральные, значит а=13. Таким образом, 2*13=26 - первое число, 28 - второе число, 30 - третье число. ответ: 26; 28; 30.
2) Пусть длина прямоугольника равна а, тогда 0,25а - ширина. По условию задачи площадь прямоугольника равна 512 см². Составляем уравнение: а*0,25а=512; 0,25а²=512; а²=512/0,25=2048; а=32√2. Длина прямоугольника равна 32√2 см, ширина равна 32√2*0,25=8√2 см. Периметр прямоугольника равен: Р=2(а+b)=2*(32√2+8√2)=2*40√2=80√2 (см). ответ: 80√2 см.
3) Пусть х - одно число, тогда (х-9) - другое число. По условию задачи их произведение равно 1386. Составляем уравнение: х(х-9)=1386; x²-9x-1386=0; D=81+5544=5625; x1=(9-75)/2=-66/2=-33; x2=(9+75)/2=84/2=42. По условию задачи произведение чисел - положительное число, значит первое число равно 42, а второе 42-9=33. ответ: 42; 33.
912.
Сначало всё обозначим:
скорость лодки х ;
скорость лодки против чтения х-4 ;
время пути по реке 20/х-4 ;
время пути по озеру 14/х.
Разница между тем и другим временем 1 час по условию. Составляем уравнение:
20/х-4 - 14/х = 1
Приводим к общему знаменателю, перемножаем, получаем квадратное уравнение:
х^2 - 10х - 56 = 0
По формуле квадратных корней находим
х1 = - 4
отбрасываем, отрицательной скорости не бывает,
х2 = 14
принимаем, это собственная скорость лодки. Скорость лодки против течения 14 - 4 = 10 (км/ч)
914.
(знаки это дробь)
Так как скорость не может принимать отрицательное значение, следовательно искомый ответ : 40.
ответ : Токарь должен был обрабатывать 40 деталей в час по плану.
915.
Решение.
Пусть х изделий бригада должна была изготовить в 1 день по плану
(120/х) дней - бригада должна работать
(х+2) - изделия
Бригада изготовляла фактически в 1 день 120/(х+2) дней - бригада работала фактически.
А так как, по условию задачи, бригада закончила работу на 3 дня раньше срока, то составим уравнение:
120/х - 120/(х+2) = 3
120(х+2) - 120х = 3х(х+2)
120х+240 - 120х - 3х² - 6х = 0
3х² + 6х - 240 = 0
х² + 2х - 80 = 0
D = 4 + 4 × 1 × 80 = 324
x¹ = (-2 - 18)/2 = - 10 < 0 не удовлетворяет условию задачи
х² = (-2 + 18)/2 = 8
8 - изделий бригада рабочих изготовляла в 1 день по плану.
ответ : 8 изделий.
Нуу вроде всё)