М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
22.07.2021 09:58 •  Алгебра

Постройте график функций y=x² иy=3x²

👇
Открыть все ответы
Ответ:
данил20601
данил20601
22.07.2021

1) tg x + 3/tg x = 4, ОДЗ tg x <> 0

множим уравнение на tg(x), который по ОДЗ не ноль

(tg x)^2 - 4 tg x + 3 = 0

видим здесь квадратное уравнение относительно tg x.

а ещё видим, что сумма показателей степеней равна 1-4+3 = 0, поэтому один корень =1, второй по т.Виетта =3

уравнение распадается на совокупность

tg x = 1

tg x = 3

 

выписываем решение:

x = arctg(1) + pi n, где ncZ

x = arctg(3) + pi k, где kcZ

 

ну можно ещё вспомнить, что arctg(1) = pi/4

 

2) вспоминаем формулу косинуса двойного угла:

cos 2a = 2 cos^2 a - 1

если a = x/2, то исходное уравнение может быть представлено как

cos x + 1 + sin x = 0

вобщем, тут уже очевидно, что либо cos x =0, sin x =-1, либо cos x=-1, sin x =0

но чтобы совсем честно решать, придётся поколдовать.

синус направо и всё в квадрат!

(cos x +1)^2 = sin^2 x

cos^2 x + 2 cos x + 1 = 1 - cos^2 x

2 cos^2 x + 2 cos x = 0

cos x (cos x + 1) = 0

произведение обращается в ноль если хотя бы один из множителей обращается в ноль. значит опять совокупность:

cos x = 0

cos x = -1

 

x = pi/2 + pi n , ncZ,

x = pi + 2pi k, kcZ

 

но тут небольшая грабля. чуть выше мы возводили к вадрат. а нулевому косинусу соответствуют два значения синуса: +1 и -1. и один из них нам не подходит.

вобщем, проверяем корни и убеждемся, что из первой последователности половина значений выпадает (pi/2 + 2pi n НЕ являются корями. а pi/2 + pi + 2pi n - удовлетворяют)

 

ответ

x = 3pi/2 + 2pi n , ncZ,

x = pi + 2pi k, kcZ

 

 

 

4,4(18 оценок)
Ответ:
diana1078
diana1078
22.07.2021

Объяснение:

1) Решение

y=(4·x-9)^5

((4·x-9)^5)' = 20(4·x-9^)4

Поскольку:

((4·x-9)5)' = 5·(4·x-9)^5-^1((4·x-9))' = 20(4·x-9)^4

(4·x-9)' = 4

20(4·x-9)^4

y=(x2-3x+1)7

2) Решение:

((x2-3x+1)7)' = (-7·3x·ln(3)+14·x)(x2-3x+1)6

Поскольку:

((x2-3x+1)7)' = 7·(x2-3x+1)7-1((x2-3x+1))' = (-7·3x·ln(3)+14·x)(x2-3x+1)6

(x2-3x+1)' = (x2)' + (-3x)' + (1)' = 2·x + (-3x·ln(3)) = -3x·ln(3)+2·x

(x2)' = 2·x2-1(x)' = 2·x

(x)' = 1

Здесь:

Решение ищем по формуле:

(af(x))' = af(x)*ln(a)*f(x)'

(-3x)' = -3x·ln(3)(x)' = -3x·ln(3)

(x)' = 1

(-7·3x·ln(3)+14·x)(x2-3x+1)6

3) Решение:

y=(sin(x))^3

(sin(x)^3)' = 3·sin(x)^2·cos(x)

Поскольку:

(sin(x)^3)' = 3·(sin(x))^3-1((sin(x)))' = 3·sin(x)^2·cos(x)

(sin(x))' = cos(x)

3·sin(x)2·cos(x)

4,7(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ