х = 32, у = 29.
Объяснение:
Записываем условие:
x - y = 3
x^2 - y^2 = 183
Выражаем y через х из первого уравнения.
y = x - 3
Заменяем y во втором уравнении.
x^2 - (x - 3)^2 = 183
Раскрываем x - 3 по правилу сокращенного умножения
(a - b)^2 = a^2 - 2ab + b^2
(x - 3)^2 = x^2 - 6x + 9
Записываем все в одно уравнение:
x^2 - (x^2 - 6x + 9) = 183
Раскрываем скобки, меняя знаки.
x^2 - x^2 + 6x - 9 = 183
6x - 9 = 183
6x = 192
x = 192/6 = 32
Следовательно y = x - 3 = 32 - 3 = 29.
Проверяем:
32 - 29 = 3
32^2 = 1024; 29^2 = 841; 1024 - 841 = 183
Все верно.
а)(53+27)²=80²=6 400
б)(186-76)²=110²=12 100
в)735²+2·735·728+728²-4·735·728=
=735²-2·735·728+728²=(735-728)²=7²=49
г) (744-740)²=4²=16
д)(306+694)²=1 000²=1 000 000
е)(914+586)²=1500²=2 250 000
ж) (257-143)·(257+143)=114·400=45 600
з)(167-67)·(167+67)=100·234=23 400
и)(162-161)·(162+161):323=1·323:323=1
к)(132-131)(132+131):265=1
л)584+583²-584²+583=
=584+(583²+583)-584²=
=584+583·(583+1)-584²=
=584+583·584-584²=
=584·(1+583-584)=
=584·0=0
м)675+674²-675²+674=675+674²+674-675²=
=675+674·(674+1)-675²=
=675+674·675-675²=
=675·(1+674-675)=
=675·0=0
t^2 - 4(a - 1)*t + (a - 1) > 0
D = 16(a - 1)^2 - 4(a - 1) = 4(a - 1)(4a - 5)
1) Если D = 0, 4(a - 1)(4a - 5) = 0, a = 1 или а = 5/4 - неравенство будет соблюдаться при любых значениях t, а значит и при любых значениях х.
2) Если D > 0, 4(a - 1)(4a - 5) > 0, a < 1 и a > 5/4
3) Если D < 0, 4(a - 1)(4a - 5) < 0, 1 < a < 5/4 - то неравенство будет соблюдаться при любых значениях t, а значит и при любых значениях х.
ответ: 1