В решении.
Объяснение: По строкам:
| 2⁴ | 2 | 2⁴ | 2⁹
| 2³ | 2³ | 2³ | 2⁹
| 2² | 2⁵ | 2² | 2⁹
| 2⁹ | 2⁹ | 2⁹ (по столбцам)
1 диагональ - 2⁹;
2 диагональ - 2⁹.
Запись в тетради: 2*2*2*2 = 2⁴;
2*2*2 = 2³;
2*2 = 2²;
2*2*2*2*2 = 2⁵;
Первая строка: 2⁴*2*2⁴ = 2⁹;
Вторая строка: 2³*2³*2³ = 2⁹;
Третья строка: 2²*2⁵*2² = 2⁹;
Первый столбец: 2⁴*2³*2² = 2⁹;
Второй столбец: 2*2³*2⁵ = 2⁹;
Третий столбец: 2⁴*2³*2² = 2⁹.
Первая диагональ: 2⁴*2³*2² = 2⁹;
Вторая диагональ: 2⁴*2³*2² = 2⁹.
Вывод: в магическом квадрате сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинаковая.
сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа вдвое больше количества цифр исходного числа.
искомая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же вдвое больше количества цифр исходного.
искомая сумма: 1 + 1 = 2 , количество цифр у квадрата равно количеству цифр исходного.
искомая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного.
сумма: 2 + 4 = 6 , количество цифр у квадрата вдвое больше количества цифр исходного.
сумма: 2 + 4 = 6 , цифр у квадрата всё так же вдвое больше количества цифр исходного.
сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 4–1 .
сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 4–1 .
сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.
сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.
сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .
сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .
сумма: 4 + 8 = 12 , у квадрата вдвое больше.
сумма: 4 + 8 = 12 , у квадрата вдвое больше.
сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
2) (3y^2-6x^8)