В решении.
Объяснение:
Скорость моторной лодки в стоячей воде 7 км/ч. Время, затраченное на движение лодки на 24 км по течению и на 24 км против течения равно 7 часам. Найти скорость течения реки.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость течения реки.
7 + х - скорость лодки по течению.
7 - х - скорость лодки против течения.
24/(7 + х) - время лодки по течению.
24/(7 - х) - время лодки против течения.
По условию задачи уравнение:
24/(7 + х) + 24/(7 - х) = 7
Умножить все части уравнения на (7 - х)(7 + х), чтобы избавиться от дробного выражения:
24*(7 - х) + 24*(7 + х) = 7*(7 - х)(7 + х)
168 - 24х + 168 + 24х = 343 - 7х²
7х² = 343 - 336
7х² = 7
х² = 1
х = √1
х = 1 (км/час) - скорость течения реки.
Проверка:
24/ 8 + 24/6 = 3 + 4 = 7 (часов), верно.
В решении.
Объяснение:
Решить систему неравенств:
1) (7,4х + 23)/21 <= 1 + 0,4x
3x - 5 <= (20x - 31)/7
Умножить обе части первого неравенства на 21, а второго на 7, чтобы избавиться от дробного выражения:
7,4х + 23 <= 21(1 + 0,4x)
7(3x - 5) <= 20x - 31
Раскрыть скобки:
7,4x + 23 <= 21 + 8,4x
21x - 35 <= 20x - 31
7,4x - 8,4x <= 21 - 23
21x - 20x <= -31 + 35
-x <= -2
x <= 4
x >= 2 (знак неравенства меняется при делении на -1)
x <= 4
Решение первого неравенства х∈[2; +∞);
Решение второго неравенства х∈(-∞; 4];
Решение системы неравенств [2; 4], пересечение.
Неравенства нестрогие, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.
Натуральные числа: 2; 3; 4 (2 и 4 входят в решения системы).
2) 1 - 2х <= (28 - 53x)/27
0,1x + 3 < (13 - 0,7x)/3
Умножить обе части первого неравенства на 27, а второго на 3, чтобы избавиться от дробного выражения:
27(1 - 2х) <= 28 - 53x
3(0,1x + 3) < 13 - 0,7x
Раскрыть скобки:
27 - 54х <= 28 - 53x
0,3x + 9 < 13 - 0,7x
-54x + 53x <= 28 - 27
0,3x + 0,7x < 13 - 9
-x <= 1
x < 4
x >= -1 (знак неравенства меняется при делении на -1)
x < 4
Решение первого неравенства х∈[-1; +∞);
Решение второго неравенства х∈(-∞; 4);
Решение системы неравенств [-1; 4), пересечение.
Первое неравенство нестрогое, скобка квадратная, второе - строгое, скобка круглая, а знаки бесконечности всегда с круглой скобкой.
Натуральные числа: 1; 2; 3 (4 не входит в решения системы).
2
Объяснение:
x - скорость течения, км/ч.
y - время, затраченное по течению, ч.
Система уравнений:
(y+0,5)(14-x)=24; 14y-xy+7-0,5x=24; 14y-xy-0,5x=17
y(14+x)=24; 14y+xy=24
14y-xy-0,5x+14y+xy=17+24
28y-0,5x=41 |×2
x=56y-82
y(14+56y-82)=24
56y²-68y-24=0 |4
14y²-17y-6=0; D=289+336=625
y₁=(17-25)/28=-8/28=-2/7 - ответ не подходит по смыслу.
y₂=(17+25)/28=42/28=3/2=1,5 ч потребовалось пройти путь лодке по течению.
3/2 ·(14+x)=24
14+x=24·2/3
x=8·2-14
x=2 км/ч - скорость течения.