М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
darik2042005p07x0l
darik2042005p07x0l
20.09.2020 04:04 •  Алгебра

Запишите вместо * такой одночлен чтобы выполнялось равенство.


Запишите вместо * такой одночлен чтобы выполнялось равенство.

👇
Ответ:
Vlada12092009
Vlada12092009
20.09.2020

1) y³

2) xy^{4}

Объяснение:

1) В первой части равенства вынесем за скобки x, а во второй -- xy³

*·x(x²-y) = xy³(x²-y)

Видим, что * -- это y³

2) Первую часть равенства оставляем без изменений, а во второй за скобки вынесем xy^{4}

(x-1)·* = xy^{4}(x-1)

Видим, что * -- это xy^{4}

4,8(30 оценок)
Открыть все ответы
Ответ:
otoshol62
otoshol62
20.09.2020
Общий ход построения данных графиков:
График   -  прямая, для построения требуется две точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо  по оси х и вверх по оси у.  Отмечаем  центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу (для каждого графика свою, приведена ниже):
Х=
У=
Отмечаем точки в системе координат, проводим через них прямую.
Подписываем график.
Всё!             
Итак, начнём:

у=-4х  - прямая,  проходящая через начало координат , поэтому достаточно ещё одной точки, например х=1, у= -4 , ставим  точку (1;-4) и проводим прямую через эту точку и начало координат.

у=х+4 
х= 0   -2
у= 4    2

у=3-х  
х= 0    3
у= 3    0

у=3х+2  
х= 0    -2
у= 2     -4
4,6(61 оценок)
Ответ:
Aldiyar26
Aldiyar26
20.09.2020
Алгоритм поиска.
Ищем точки экстремума по условию y'=0. Определяем, является ли точка минимумом или максимумом по критерию изменения знака y' в данной точке: если знак y' изменяется с "+" на "-", то функция имеет максимум; если с "-" на "+" - минимум; если не изменяется - не является экстремумом.
Наибольшее значение на отрезке определяется как максимальное значение среди всех максимумов функции на отрезке и значений функции на концах отрезка.
Наименьшее значение функции определяется как минимальное значение среди всех минимумов на отрезке и значений функции на концах отрезка.

5.10
a) y = x³ - 3x²; отрезок [-1; 3]

y(-1) = (-1)³-3(-1)² = -1-3 = -4
y(3) = 3³-3*3² = 0

y'=3x²-6x=3x(x-2). Точки, подозрительные на экстремум: x=0; x=2. При x∈(0;2) y'<0 (функция y убывает (y↓)), при x∉(0;2) y'>0 (функция y возрастает (y↑)).
y(0) = 0
y(2) = 2³-3*2² = 8-12 = -4

Слева от точки (0;0) функция y возрастающая, справа - убывающая. Значит, точка (0;0) является локальным максимумом.
Слева от точки (2;-4) функция y убывающая, справа - возрастающая. Значит, точка (2;-4) является локальным минимумом.

Наибольшее значение функции y на отрезке [-1;3] равно max (y(-1),y(0),y(3)) = max (-4,0,0) = 0 (достигается в точках x=0 и x=3.
Наименьшее значение функции y на отрезке [-1;3] равно min (y(-1),y(2),y(3)) = min (-4,-4,0) = -4 (достигается в точках x=-1 и x=2.

В остальных решениях я буду писать кратко.

б) y = 2x³ - 6x² + 9; отрезок [-2; 2]

y(-2) = 2(-2)³ - 6(-2)² + 9 = -16 - 24 + 9 = -31
y(2) = 2(2)³ - 6(2)² + 9 = 16 - 24 + 9 = 1

y' = 2*3x² - 6*2x = 6x(x-2)
y'=0 ⇒ x∈{0;2}

x∈(0;2) ⇒ y'<0 ⇒ y↓
x∉[0;2] ⇒ y'>0 ⇒ y↑

y(0) = 9

(0;9): y слева ↑, справа ↓ ⇒ (0;9) - локальный максимум
(2;1): y слева ↓, справа ↑ ⇒ (2;1) - локальный минимум

max (y(-2),y(0)) = max (-31,9) = 9 ⇒ x=0
min (y(-2),y(2)) = min (-31,1) = -31 ⇒ x=-2

5.11
а) y = 2x³ - x²; отрезок [-1; 1]

y(-1) = 2(-1)³ - (-1)² = -2 - 1 = -3
y(1) = 2(1)³ - (1)² = 2 - 1 = 1

y' = 2*3x² - 2x = 2x(3x-1)
y'=0 ⇒ x∈{0;1/3}

x∈(0;1/3) ⇒ y'<0 ⇒ y↓
x∉[0;1/3] ⇒ y'>0 ⇒ y↑

y(0) = 0
y(1/3) = 2(1/3)³ - (1/3)² = 2/27 - 1/9 = -1/27

(0;0): слева y↑, справа y↓ ⇒ (0;0) - локальный максимум
(1/3;-1/27): слева н↓, справа y↑ ⇒ (1/3;-1/27) - локальный минимум

max (y(-1),y(0),y(1)) = max (-3,0,1) = 1 ⇒ x=1
min (y(-1),y(1/3),y(1)) = min (-3,-1/27,1) = -3 ⇒ x=-1

б) y = 2x³ + 6x² + 8; отрезок [-3; 2]

y(-3) = 2(-3)³ + 6(-3)² + 8 = -54 + 54 + 8 = 8
y(2) = 2(2)³ + 6(2)² + 8 = 16 + 24 + 8 = 48

y' = 2*3x² + 6*2x = 6x(x+2)
y'=0 ⇒ x∈{-2;0}

x∈(-2;0) ⇒ y'<0 ⇒ y↓
x∉[-2;0] ⇒ y'>0 ⇒ y↑

y(-2) = 2(-2)³ + 6(-2)² + 8 = -16 + 24 + 8 = 16
y(0) = 8

(-2;16): слева y↑, справа y↓ ⇒ (-2;16) - локальный максимум
(0;8): слева y↓, справа y↑ ⇒ (0;8) - локальный минимум

max (y(-3),y(-2),y(2)) = max (8,16,48) = 48 ⇒ x=2
min (y(-3),y(0),y(2)) = min (8,8,48) = 8 ⇒ x∈{-3;0}
4,7(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ