ответ:x=1/6
Объяснение:
(6x-1)²=0
6x-1=0
6x=1
x=1/6
Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.
Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).
В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.
1) пусть x- скорость автомобилиста, тогда скорость мотоциклиста x-20; s=vt; s которое проехал автомобилист= 5x, а расстояние, которое проехал мотоциклист= 7(x-20) так как расстояние они проехали одинаковое мы их приравниваем 5x=7(x-20) отсюда x=70( скорость автомобилиста).
Скорость мотоциклиста= 70-20=50
2)пусть x- скорость мотоциклиста, тогда скорость велосипедиста x-25; s=vt; t мотоциклиста=2 целых 15/60=2,25;
s которое проехал мотоциклист= 2,25x, а расстояние, которое проехал велосипедист= 6(х-25), так как расстояние они проехали одинаковое мы их приравниваем 2,25х=6(х-25) отсюда x=40( скорость мотоциклиста).Скорость велосипедиста= 40-25=15.
на фото