В комнате стоят 100 100
стульев двух цветов: синего и красного. На каждый из стульев сел либо рыцарь, либо лжец. Каждый из них заявил, что он сидит на синем стуле.
Затем все люди как-то пересели, после чего половина сидящих сказала, что теперь они сидят на синих стульях, а остальные сказали, что сидят на красных. Сколько рыцарей теперь может сидеть на красных стульях?
Введите все возможные ответы в произвольном порядке.
В первом случае будет ноль, т.к. синус и косинус функции периодические, их произведение изменяется не более, чем от плюс до минус единицы. А Всё делится на бесконечность. Второй случай сложнее, периодически встречаются бесконечные разрывы, тогда предел будет плюс или минус бесконечность.
2)
Сделаем замену t=5/x, тогда t→0 и x=5/t
Использован второй замечательный предел:
3)
Сделаем замену t=2/x, тогда t→0 и x=2/t
4)
Сделаем замену t=2/(3x), тогда t→0 и x=2/(3t)
Т.о. везде делаются преобразования, чтобы использовать второй замечательный предел.