Пусть скорость пешком v₁ = х км/ч, тогда скорость на велосипеде v₂ = х + 6 км/ч Время при движении пешком t₁ = 45 мин = 3/4 ч Время на велосипеде t₂ = 20 мин = 1/3 ч Расстояние до школы S = v₁t₁ = v₂t₂
Тогда: v₁t₁ = v₂t₂ x*3/4 = (x + 6)*1/3 3/4 x = 1/3 x + 2 9/12 x - 4/12 x = 2 5/12 x = 2 x = 2 * 12/5 x = 24/5 x = 4,8 (км/ч) - скорость пешком. х + 6 = 10,8 (км/ч) - скорость на велосипеде
Раз по реке она шла меньше времени при большем расстоянии, значит явно шла по течению. Пусть её собственная скорость V, время пути по реке t, тогда верны следующие соотношения(не забудем перевести минуты в часы): 36 = (V+2)*t, 35 = V * (t+1/20) Раскрываем скобки: 36 = Vt+2t 35=Vt+V/20 Вычитаем из второго уравнения первое: 1 = V/20 - 2t Выражаем скорость: V/20 = 1 + 2t V = 20 + 40 t Подставим это соотношение, например, в первое уравнение: 36=(20+40t+2)t 36 = 40 t^2 + 22 t 40 t^2 + 22 t - 36 = 0 Сокращаем: 20 t ^2 + 11 t - 18 = 0 Решаем квадратное уравнение: D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо) t = (-11+-(39,5)) / 40 = {-1,25; 0,7} Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости: V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч. Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
Ширина прямоугольника = х , длина = (x+4) .
Площадь прямоугольника равна S=x*(x+4) = 60
Подходит положительное число 6 . Тогда (х+4)=6+4=10 .
ответ: ширина = 6 ед. , длина = 10 ед.