М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Viking012345
Viking012345
07.04.2023 13:11 •  Алгебра

ПРОИЗВОДНАЯ

ответы нужны с решением


ПРОИЗВОДНАЯ ответы нужны с решением

👇
Ответ:
omelyanovichni
omelyanovichni
07.04.2023

ответ смотрите на фото.


ПРОИЗВОДНАЯ ответы нужны с решением
4,8(25 оценок)
Открыть все ответы
Ответ:
mariana2411
mariana2411
07.04.2023

Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.

Подробное решение:

Рассмотрим 1ую функцию:

Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).

Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.

Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y)  ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.

Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x

Рассмотрим 2ую функцию:

Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.

Рассмотрим 3ью функцию:

Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3

4,6(35 оценок)
Ответ:
ната1182
ната1182
07.04.2023

max {k / S(k)} = 1 000 000

Объяснение:

Цифра в старшем разряде не может быть равна 0, потому что в противном случае число не будет семизначным. Сначала рассмотрим случай, когда это единственная ненулевая цифра в числе k:

\dfrac{k}{S(k)}=\dfrac{a\cdot10^6}{a}=10^6

Теперь предположим, что в числе есть другие ненулевые цифры и покажем, что в этом случае значение дроби меньше 10⁶. Цифры числа k обозначим через a₆, a₅, ..., a₀.

\dfrac{k}{S(k)} = \dfrac{a_6\cdot10^6 + a_5\cdot10^5+\dots+a_0\cdot10^0}{a_6+a_5+\dots+a_0} = 10^6\dfrac{a_6}{a_6+a_5+\dots+a_0} + 10^5\dfrac{a_5}{a_6+a_5+\dots+a_0}+\dots+10^0\dfrac{a_0}{a_6+a_5+\dots+a_0}

Рассмотрим дробь \dfrac{a_i}{a_6+a_5+\dots+a_0}, где a_i – одна из цифр числа k. Заметим, что \dfrac{1}{x+y} \leq \dfrac{1}{x} для любых x>0 и y≥0. Тогда если мы оставим в знаменателе этой дроби только два слагаемых, одно из которых (ai) присутствует в числителе, а второе (aj) не равно нулю, будет верно неравенство:

\dfrac{a_i}{a_6+a_5+\dots+a_0} \leq \dfrac{a_i}{a_i+a_j}

Если a_i=0, то \dfrac{a_i}{a_i+a_j}=0. В противном случае мы можем поделить числитель и знаменатель дроби на a_i: \dfrac{a_i}{a_i+a_j}=\dfrac{1}{1+a_j/a_i}, а поскольку ai и aj – это некоторые отличные от нуля цифры, максимально возможное значение этой дроби достигается при ai=9 и aj=1: \dfrac{1}{1+a_j/a_i} \leq \dfrac{1}{1+1/9} = \dfrac{1}{10/9} = \dfrac{9}{10}.

Из этого следует, что \dfrac{a_i}{a_6+a_5+\dots+a_0} \leq \dfrac{a_i}{a_i+a_j} \leq \dfrac{9}{10}.

Теперь вернемся к исходному отношению k/S(k) при наличии хотя бы двух отличных от нуля цифр:

\dfrac{k}{S(k)} = 10^6\dfrac{a_6}{a_6+a_5+\dots+a_0} + 10^5\dfrac{a_5}{a_6+a_5+\dots+a_0}+\dots+10^0\dfrac{a_0}{a_6+a_5+\dots+a_0} \leq 10^6\dfrac{9}{10} + 10^5\dfrac{9}{10} + \dots + 10^0\dfrac{9}{10} = 10^5\cdot9 + 10^4\cdot9 + \dots + 10^{-1}\cdot9 = 999999.9 < 10^6

Таким образом, мы доказали, что максимальное значение дроби k/S(k) равно 10⁶ = 1000000 и достигается, когда все все цифры числа k, кроме первой, равны нулю.

4,4(53 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ