А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
Q1+Q2+Q3=0. ( Q1-количество теплоты, полученное сосудом)
Q1=c1*m1*(t2 - t1). ( c1-удельная теплоемкость алюминия=890Дж/кг*град, m1-его масса=0,045кг, t1-начальная температура =20, t2-конечная температура=30) .
Q2-количество теплоты, полученное водой.
Q2=c2*m2*(t2 - t1) (c2-удельная теплоемкость =4200Дж/кг*град, m2 - масса воды=0,15кг) .
Q3-количество теплоты, отданное нагретым телом.
Q3=c3*m3*(t2 - t3). ( c3-удельная теплоемкость вещества, m3-его масса=0,2кг, t3-его начальная температура =95) .
c1*m1*(t2 - t1) + c2*m2*(t2 - t1) + c3*m3*(t2 - t3)=0.
c3*m3*(t2 - t3)= - c1*m1*(t2 - t1) - c2*m2*(t2 - t1).
с3= - (с1*m1*(t2 - t1) + c2*m2*(t2 - t1)) / m3*(t2 - t3).
c3= - (890*0,045*(30 - 20) + 4200*0,15*(30 - 20)) / 0,2*(30 - 95)=515,4Дж /кг*град
ответ 515,4Дж /кг*град