первое число дает остаток 1 при делении на 4 значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1 число 1 при делении на 4 дает остаток 1 итого куб первого числа при делении на 4 даст остаток 1
второе число дает остаток 3 при делении на 4 значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27 число 27 при делении на 4 дает остаток 3
сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4, так как 4 при делении на 4 дает остаток 0, то сумма кубов этих чисел кратна 4 ---------------------------------- второй
так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число аналогично второе можно записать в виде 4k+3, где k - некоторое целое число
сумма кубов этих чисел а значит сумма кубов делится нацело на 4. Доказано
Число 25 нужно разбить на 3 слагаемых, используя цифры от 0 до 9.
Единственная подходящая комбинация: 9+9+7=25.
Из 3-х цифр: 9, 9, 7 можно составить 3 трехзначных числа:
997
799
979
Нужно проверить, какое из этих чисел делится на 11.
Правило делимости на 11: число делится на 11, когда знакочередующаяся сумма его цифр делится на 11.
997 => 9+(-9)+7=7, 7 не делится на 11. значит 997 не делится на 11.
799 => 7+(-9)+9=7, 799 не делится на 11.
979 => 9+(-7)+9=9+9-7=18-7=11; 11/11=1 - 979 делится на 11.
ответ: средняя цифра 7