1. |x²-7|+12=0
|x²-7|=-12
x∈∅
Данное уравнение не имеет корней, т.к. модуль является неотрицательным числом.
2. Выделим полный квадрат:
x²-6x+8 = (x²-2x*3+3²) -3²+ 8 = (x-3)² -9 + 8 = (x-3)² -1
Разложим на множители x²-6x+8 = (x-x₁)(x-x₂)
По теореме Виета находим корни: х₁*х₂=8 и х₁+х₂=-6 => х₁=2 и х₂=4
x²-6x+8= (x-2)(x-4)
3. 3x²-6x+c=0, x₁=x₂
По условию, квадратное уравнение имеет равные корни, следовательно, дискриминант этого уравнения равен нулю.
Находим с:
D= (-6)²-4*3*c = 36-12c
36-12c = 0
12c = 36
c = 3
У=0, подставим в уравнение
0=1/9х-4
-1/9х= -4
Х= -4:(-1/4)= -4*(-4)=16
А(16;0) координаты точки пересечения.
У= -2х+6
(4;2) если точка принадлежит графику, то её координаты , при подстановке , обращают уравнение в числовое тождество
2= -2*4+6
2= -2 не принадлежит
(-3;0)
0= -2*(-3) +6
0=6+6
0=12 не принадлежит
(3;1)
1= -2*3+6
1=-6+6
1=0 не принадлежит
У=16х-63. К1=16
У= -2х+9. К2= -2
Коэффициенты при Х не равны, значит прямые пересекаются. Координаты точки пересечения общие и мы их можем приравнять
16х-63= -2х+9
16х+2х=9+63
18х=72
Х=4
это координата Х подставим в любое уравнение и найдём координату
У
У= -2*4+9= -8+9=1
С (4;1)
Координаты точки пересечения.