Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
Дано: ABCD, AD║ BC, AD = BC.
Доказать: ABCD - параллелограмм.
Доказательство:
Проведем BD.
ВС = AD по условию,
∠1 = ∠2 как накрест лежащие при пересечении AD║BC секущей BD,
BD - общая сторона для треугольников ABD и CDB, ⇒
ΔABD = ΔCDB по двум сторонам и углу между ними.
Из равенства треугольников следует, что
∠3 = ∠4, а это накрест лежащие углы при пересечении прямых CD и АВ секущей BD, значит
CD║AB.
Если в четырехугольнике противоположные стороны параллельны, то это параллелограмм.
2 признак.
Если в четырехугольнике противоположные стороны равны, то этот четырехугольник - параллелограмм.
Дано: ABCD, AB = CD, BC = AD.
Доказать: ABCD - параллелограмм.
Доказательство:
Проведем BD.
ВС = AD по условию,
AB = CD по условию,
BD - общая сторона для треугольников ABD и CDB, ⇒
ΔABD = ΔCDB по трем сторонам.
Из равенства треугольников следует, что
∠1 = ∠2, а это накрест лежащие углы при пересечении прямых ВС и AD секущей BD, значит ВС║AD и ABCD - параллелограмм по первому признаку.
3 признак.
Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.
Дано: ABCD, AC∩BD = O, AO = OC, BO = OD.
Доказать: ABCD - параллелограмм.
Доказательство:
AO = OC по условию,
BO = OD по условию,
∠АОВ = ∠COD как вертикальные, ⇒
ΔАОВ = ΔCOD по двум сторонам и углу между ними.
Значит, AB = CD и ∠1 = ∠2, а это накрест лежащие углы при пересечении прямых АВ и CD секущей АС, значит АВ║CD.
ABCD - параллелограмм по первому признаку.
Скорость Маши v(M) = S/35 м/мин
Скорость Коли v(K) = S/28 м/мин
Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4
Если бы они начали одновременно, то Коля пробежал бы
5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли.
А на самом деле Маша пробежала 0,75 от пути Коли.
Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м.
А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4
x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши.
3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше.
Пусть Коля начал раньше на а мин.
Значит, когда Маша начала, он уже пробежал а/35 часть пути.
Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части.
Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от
старта Маши до встречи. А всё вместе он пробежал 4/7 пути.
a/35 + 5(35-a)/315 = 4/7
Умножаем всё на 315 = 35*9 = 45*7
9a + 175 - 5a = 4*45 = 180
4a = 5
a = 5/4
Ближе всего это к 1 мин. Видимо, правильный ответ:
Г) Коля на 1 мин раньше.