а)f'(x) =6x-6x²=6x(1-x). Критические точки из уравнения 6х(1-х)=0.
х=0 и х=1.
Обе точки на данном интервале. -1___-___0___+___1-__2 .
Знаки можно не определять, а обойтись только сравнением значений.
у(-1)=3*(-1)²-2*(-1)³ = 5.
у(0)=0
у(1)=1
у(2)=-4. Сравниваем. Наибольшее равно 5, наименьшее равно -4.
Во втором полная аналогия, f'(x)=3x²-12x=3x(x-4).
Критические точки 0 и 4, на интервале только 0.
Вычисляем у(-2)=-32, у(0)=1, у(1)=-4. Наибольшее равно 1, наименьшее -32.
в)f'(x)=5cosx-2sin2x.
Критические точки из уравнения 5cosx-4sinx*cosx=0
cosx=0 или sinx=5/4. x=π/2, а во втором корней нет. Сравниваем
у(0)=0+1=1, у(π/2)=5-1=4 и у(π) 0+1=1. Наибольшее 4, наименьшее 1.
2428/35
Объяснение:
Сначало превращаем 63 34/35 в неправильную дробь. Что бы преобразовать необходимо целое тоесть 63 умножить на знаменатель- 35 и прибавить числитель- 34 , в числитель записываем число которое у нас получилось, а знаменатель остаётся тот же.63•35+34/35= 2239/35
2. потом преобразовываем 5,4 в смешанное число, получается 5 целых 4 десятых
5 4/10 сокращаем тоесть 4 делим на 2 и 10 тоже делим на 2
5 4/10=5 2/5 и преобразовываем в неправильную дробь
(5•5+2/5) 5 2/5= 27/5
приводим 2239/35 и 27/5 к общему знаменателю,а то есть находим Нок 5 и 35 . Нок это 35 , таким образом мы 2239/35 оставляем так же, а 27/5 и числитель и знаменатель умножаем на 7( умножаем на 7 потому что, чтобы получилось 35 надо 5 умножить именно на 7)(27•5 / 5•5) получается 2239/35+189/35 складываем только числители
2239/35+189/35=2428/35
Коротко:63 34/35+ 5,4 = 2239/35+5 4/10= 2239/35+5 2/5=
2239/35+27/5 = 2239/35+189/35= 2428/35