Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
Чтобы доказать, что треуг равноб, нужно найти длины всех трех сторон: координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3) АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех аналогично все остальные стороны ВС=(2-2;-2-4)=(0;-6) длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6 АС=(2-(-6);-2-1)=(8;-3) АС=корень квадратный из суммы квадратов координат получаем, что и длина АС равна корень из 75 АВ=АС, то есть треуг равноб
Объяснение:
Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
5; 5q; 5q² геометрическая прогрессия
5-20; 5q; 5q² арифметическая прогрессия
по характеристическому свойству
арифметической прогрессии
2 · 5q = -15 + 5q² |:5
q² - 2q - 3 = 0
D=b² - 4ac
D=4 + 12 = 16
q₁ = (2 + 4)/2 =3
тогда арифметическая прогрессия: -15; 15; 45
q₂ = (2 - 4)/2 = -1
тогда арифметическая прогрессия: -15; -5; 5
О т в е т: -15; 15; 45 или -15; -5; 5