Так как логарифм б по основанию а равно 2, то б равно а в квадрате, тогда log(ab⁴)по основанию а=log(a(a²)⁴) по основанию а=loga⁹ по основанию а=9. ответ: 9.
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки. Решаем две системы решение системы предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0; 5x-9>1; х²-4х+5≤1; х²-4х+5>0. Решение каждого неравенства системы: х≤20/11 х>1,8 х=2 х- любое О т в е т. 1а) система не имеет решений. б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0 0<5x-9<1 х²-4х+5≥1 х²-4х+5>0 Решение х≤20/11 0<х<1,8 х-любое (так как х²-4х+4≥0 при любом х) х- любое Решение системы 1б) 0<x<1,8, так как (20/11) >1,8 О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 5x-9>1 х²-4х+5≥1 х²-4х+5>0 Решение х≥20/11 х>1,8 х-любое х- любое О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 0<5x-9<1 х²-4х+5≤1 х²-4х+5>0 Решение х≥20/11 0<х<1,8 х=2 х- любое Решение системы 2б) нет решений О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11 или х∈(0;1,8)U(1целая 9/11;+∞)
2sinx=tgx, tgx=sinx/cosx ⇒ sinx=tgxcosx
2tgxcosx=tgx
2tgxcosx-tgx=0
tgx(2cosx-1)=0
1) tgx=0 ⇒ x=πn, n∈Z
2)2cosx-1=0
2cosx=1
cosx=1/2 ⇒ x=(плюс-минус)π/3+2πn, n∈Z
ответ: x=πn, n∈Z; x=(плюс-минус)π/3+2πn, n∈Z
б) x∈[-2π;-π/2]
Данному промежутку принадлежат корни: -2π, -5π/3, -π
Так как логарифм б по основанию а равно 2, то б равно а в квадрате, тогда log(ab⁴)по основанию а=log(a(a²)⁴) по основанию а=loga⁹ по основанию а=9.
ответ: 9.
а) 2cos(π/2+x)=√3tgx, cos(π/2+x)=-sinx
-2sinx=√3tgx, tgx=six/cosx ⇒ sinx=tgxcosx
-2tgxcosx=√3tgx
-2tgxcosx-√3tgx=0
tgx(-2cosx-√3)=0
1) tgx=0 ⇒ x=πn, n∈Z
2) -2cosx-√3=0
-2cosx=√3
cosx=-√3/2
x=(плюс-минус)5π/6+2πn, n∈Z
ответ: x=πn, n∈Z; x=(плюс-минус)5π/6+2πn, n∈Z
б) x∈[-3π;-3π/2]
Данному промежутку принадлежат корни: -3π, -13π/6, -2π