М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alinabilalova161
alinabilalova161
12.07.2022 18:17 •  Алгебра

решить задачи по алгебре . 1. Периметр прямоугольника равен 62 м. Найдите его стороны, если площадь прямоугольника равна 210 м2.
2. Найдите катеты прямоугольного треугольника, если известно, что их сумма равна 23 см, а площадь данного треугольника равна 60 см2.
Картинки не прилагаются)

👇
Ответ:
yulia14683
yulia14683
12.07.2022

Пусть x и y - стороны прямоугольника.

Р=2(x+y) - его периметр

S=x·y -его площадь

2(x+y)=62

xy=210

x=31-y

y(31-y)=210

x=31-y

31y-y²=210

Решим второе уравнение системы

y²-31y+210=0

Д=121

y₁=(31+11)/2=21

y₂=(31-11)/2=10

y₁=21

x₁=10

y₂=10

x₂=21

ответ: 10 м и 21 м - стороны прямоугольника

4,7(40 оценок)
Открыть все ответы
Ответ:
sadasaдаа
sadasaдаа
12.07.2022
Решение:
Обозначим собственную скорость моторной лодки за (х) км/час, тогда скорость лодки по течению равна:
(х+2) км/час, а против течения реки, скорость лодки равна:
(х-2) км/час)
Расстояние 60 км лодка проплыла за время:
60/(х+2) час, а расстояние 32 км, лодка проплыла за время:
32/(х-2) час
А так как общее время в пути составило 5 часов, то:
60/(х+2)+32/(х-2)=5
(х-2)*60+(х+2)*32=(х+2)*(х-2)*5
60х-120+32х+64=5х²-20
5х²-20-92х+56=0
5х²-92х+36=0
х1,2=(92+-D)/2*5
D=√(8464-4*5*36)=√(8464-720)=√7744=88
х1,2=(92+-88)/10
х1=(92+88)/10
х1=18
х2=(92-88)/10
х2=0,4  - не соответствует условию задачи- низкий показатель для скорости моторной лодки
Отсюда:
Собственная скорость моторной лодки 18км/час
4,8(76 оценок)
Ответ:
DEAFKEV
DEAFKEV
12.07.2022
f(x)=3-4x+x^2\\g(x)=3-x^2

Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).

Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под g(x);
2. Теперь — под f(x);
3. Разность площадей g(x)-f(x) и будет искомой фигурой.

По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.

Поехали.

1)
\int\limits^{2} _0 {(3-x^2+1)} \, dx=(4x-x^3/3)|^{2}_0=8-8/3

2)
 \int\limits^2_0 {(3-4x+x^2+1)} \, dx =(4x-2x^2+x^3/3)|^2_0=8-8+8/3=8/3

3) 8-8/3-8/3=8-16/3=8/3 (кв. ед.)

Вроде бы так... :)
Попробую сейчас проверить решение. 
 
upd: да, всё сошлось.
 
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат
4,5(40 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ