2-я труба наполняет бассейн за Х часов. Производительность 1-й трубы 1/9 бассейна/час, 2-й трубы 1/Х бассейна/час. Суммарная производительность 1/9 + 1/Х. По условию 1/(1/9 + 1/Х) = 7 часов 12 минут = 7,2 час. Решай уравнение. 1часть - наполненный бассейн. 7час12мин=7и12/60часа=7,2часа. 1) 1:7,2=10/72=5/36 частей бассейна наполнятся через две трубы за 1 час. при совместной работе. 2) 1:9=1/9 часть бассейна наполнится через 1-ю трубу за 1 час. 3) 5/36-1/9=(5-4)/36=1/36 часть бассейна наполнится через 2-ю трубу за 1 час. 4) 1:1/36=1*36/1=36(часов) понадобится, чтобы наполнить бассейн через 2-ю трубу.
3.
Объяснение:
х деталей в день изготавливает первый рабочий
у деталей в день изготавливает второй рабочий.
Известно, что за 16 дней первый рабочий и за 15 второй изготовили 1090 деталей, значит:
16х+15у=1090
По второму условию второй рабочий за 2 дня изготавливал на 60 деталей меньше, чем первый рабочий за 3 дня:
2у=3х-60
Значит подходит только 3-й вариант:
{16x+15y=1090
{3x−60=2y
Решим задачу:
у=1,5х-30
16х+15*(1,5х-30)=1090
16х+22,5х-450=1090
38,5х=1540
х=40 деталей в час изготавливает первый рабочий
1,5*40-30=30 деталей в час изготавливает второй рабочий