Как известно, биссектриса отсекает от параллелограмма равнобедренный треугольник, а значит ED=DC=3
Дальше все просто
Найдём всю сторону AD=2+3=5
Периметр = (5+3)*2=16
Ответ: 16
При |x|≥2 x^2-4≥0. Тогда при y≥-x^2 y+x^2=x^2-4, откуда y=-4. -4≥-x^2 ⇒ x^2≥4. Справедливо для всех x, для которых |x|≥2 При y<-x^2 -y-x^2=x^2-4 y=4-2x^2. Должно выполняться 4-2x^2<-x^2, откуда x^2>4 опять же, справедливо для всех x, для которых |x|>2. При |x|<2 x^2-4<0 Тогда при y≥-x^2 y+x^2=-x^2+4, откуда y=4-2x^2. Должно выполняться 4-2x^2≥-x^2 x^2≤4. Неравенство верно при всех x, таких что |x|<2 При y<-x^2 -y-x^2=-x^2+4, откуда y=-4 -4<-x^2 ⇒x^2<4 - Неравенство верно при всех x, таких что |x|<2 Соответственно, получается, что для всех x справедливы следующие равенства: y=-4 y=4-x^2. Графиком данного уравнения являются 2 линии: 1) прямая, параллельная оси Ox, проходящая через точку (0;-4) 2) парабола с ветвями, направленными вниз, и вершиной в точке (0;4).
2x−3≥7⇒2x≥10⇒x≥5 ответ: x ≥ 5 или x∈ [5;+∞) Из первого неравенства находим: x ∈ [5;+∞) или x ≥ 5 Решим второе неравенство системы x+4 ≥ 1⇒x ≥ −3 ответ: x ≥ −3 или x ∈ [−3;+∞) Из второго неравенства находим: x ∈ [−3;+∞) илиx ≥ − 3 Наносим найденные интервалы на числовую ось и находим их пересечение:
Ι Ι Ι Ι ΙΙ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι
−3 Ι Ι Ι Ι ΙΙ Ι Ι Ι Ι Ι Ι Ι Ι Ι 5 Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι ответ: x∈ [5;+∞) или x ≥ 5 Там где палочки надо нарисовать координатную ось и отметить на ней точки -3 и 5
Дальше все просто
Найдём всю сторону AD=2+3=5
Периметр = (5+3)*2=16
Ответ: 16