K (9,3)
P (-4, 16)
M (-4, -16)
A (3, 9)
ответ A, P
1) Обозначим первую цифру задуманного числа х, а вторую - у. Выполнив указанные действия, получим:
Т.е., всегда будет получаться 11.
2) Признак делимости на 3: на три делятся те числа, сумма цифр которых делится на 3.
Данное число (10^n+317) будет состоять из единицы, n нулей, тройки, единицы и семёрки. Сумма цифр равна 1+3+1+7 = 12.
12 делится на 3, значит, и число 10^n+317 тоже делится на 3, ЧТД
Аналогично, признак делимости на 9: на 9 делятся те числа, сумма цифр которых делится на 9.
10^n состоит из единицы и n нулей. Если от него отнять 1, оно будет состоять из девяток. Соответсвенно, сумма цифр этого числа поделится на 9, ЧТД.
1) A( 7; 49 ) ;
2) B( 3; –9 ) ;
3) C( 10; 100 ) ;
4) D( – 1/2 ; 1/4 ) ;
5) M( –6; –36 ) ;
6) N( –5; 25 )
Объяснение: