Итак, имеем две функции у= 4/х и у= х
Для каждой из них чертим табличку
у=х прямая, проходящая через точку (0;0), значит нужна еще одна точка, например, (2;2)
у=4/х - гипербола, нужно неск точек как положительных так и отрицательных но не х=0
х= 0,5 1 2 4 8 -0,5 -1 -2 -4 -8
у= 8 4 2 1 0,5 -8 -4 -2 -1 -0,5
Теперь по точкам строим два графика ( график второй функции состоит из двух частей) и смотрим точки пересечения графиков. Эти точки и пишем в ответ.
ответ: (2;2) и (-2;-2)
Подробнее - на -
Объяснение:
ВОТ ТАК
4 вариант
Объяснение: рисуем числовую прямую и отмечаем точки -5 и 2 (нули неравенства (приравниваем каждую скобку к 0 и находим х, это и есть нули неравенства))
Далее берем точку правее от большего нуля и подставляем в неравенства (например 3). Общий знак неравенства + (первая скобка дает + при подстановке тройки и вторая, а +*+=+)
Потом берем точку посередине наших нулей (например 0) и также подставляем. Общий знак неравенства - ( первая скобка дает +, а вторая -, а +* - = -)
И последней подставляем точку левее меньшего нуля( например -6). Общий знак неравенства + (все по той же логике как было описано выше)
А поскольку неравенство запрашивает значения меньше нуля, то ответом будет промежуток с отрицательным знаком неравенства, то есть вариант 4
Нули функции x=-3, x=2.