У нас 3 модуля
|1| |2| |3|
Нужно пассмотреть все варианты рещеений если |a| = 1) a
2) -a
какие будут варианты
1) |1|=1 |2|=2 |3|=3 корень 1 = 18
2) |1|=1 |2|=2 |3|=-3 2 комплексных корня
3) |1|=1 |2|=-2 |3|=3 корень -54/41
4) |1|=1 |2|=-2 |3|=-3 2 комплексных корня
4) |1|=-1 |2|=2 |3|=3 корень 80/11
6) |1|=-1 |2|=2 |3|=-3 2 комплексных корня
7) |1|=-1 |2|=-2 |3|=3 корень -80/33
8) |1|=-1 |2|=-2 |3|=-3 2 комплексных корня
у НАС ВСЯ числовая прямая разбита на 4 отрезка
(-oo; 0] [0; 3.25] [3.25; 6] [6; +oo]
Первый отрезек соответствует 8) варианту
Второй отрезек соответствует 6) варианту
Третий отрезек соответствует 2) варианту
Четвертый отрезек соответствует 1) варианту
Следовательно мы имеет всего 1 действительный корень = 18
Это уравнение можно решить методом интервалов.
Находим нули модулей:
х+2=0;
х=-2;
2х+8=0;
2х=-8;
х=-4.
Получаем интервалы:
(-∞;-4), [-4;-2), [-2;+∞).
На этих интервалах модули имеют следующие знаки:
(х+2): - - +
(2х+8): - + +
Раскрываем модули в соответствии со знаками:
1) -x-2+2x+8=a;
a=x+6.
2) -x-2-2x-8=a;
a=-3x-10.
3) x+2-2x-8=a;
a=-x-6.
Теперь построим графики функций, приняв а=у:
у=х+6 на отрезке (-∞;-4);
у=-3х-10 на отрезке [-4;-2);
y=-x-6 на отрезке [-2;+∞).
На графике хорошо видно, что одно решение это уравнение имеет при а=у=2.
ответ: 2.