между (–13) и 19 (включительно) лежат нечётные числа: (–13), (–11), (–9), (–7), (–5), (–3), (–1), 1, 3, 5, 7, 9, 11, 13, 15, 17 и 19 – всего 17 чисел.
Нам необходимо найти сумму всех допустимых каждое из которых представляет собой какое-то допустимое нечётное число, умноженное на 17, тогда можно сложить все эти допустимые нечётные числа и умножить их на 17 (вынести за скобку общий множитель).
Чтобы сложить члены арифметической последовательности (которой являются последовательные нечётные числа), нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:
[[[ 2-ой
Пусть
Итак:
Нам необходимо найти сумму всех членов арифметической прогрессии в пределах индекса который пробегает разных значений.
Чтобы сложить члены арифметической прогрессии, нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:
Пусть за хч-первая наполнит,а х+6 ч-наполнит вторая труба.1/х-производительность первой трубы в 1час,а 1/(х+6) -производительность второй.а 1/4 ч общая производительность за 1час.Составим уравнение:1/х+1/(х+6)=1/4 - приводим к общему знаменателю-4*х*(х+6)4х+4х+24=х²+6хх²-2х-24=0Квадратное уравнение, решаем относительно x:Ищем дискриминант: D=(-2)²-4*1*(-24)=4+96=√100=10;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(10+2)/2=12/2=6; x₂=(-10+2)/2=-8/2=-4 - этот ответ не подходит,т.к. время не может быть отрицательное.Значит первая труба в отдельности может наполнить бассейн за 6ч,а вторая 6+6=за 12часов.
Итак:
между (–13) и 19 (включительно) лежат нечётные числа:
(–13), (–11), (–9), (–7), (–5), (–3), (–1), 1, 3, 5, 7, 9, 11, 13, 15, 17 и 19
– всего 17 чисел.
Нам необходимо найти сумму всех допустимых
Чтобы сложить члены арифметической последовательности (которой являются последовательные нечётные числа), нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:
[[[ 2-ой
Пусть
Итак:
Нам необходимо найти сумму всех членов арифметической прогрессии в пределах индекса
Чтобы сложить члены арифметической прогрессии, нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:
О т в е т : 867 .