Дано функцію f(x) = (x^2-8x)/(x+1)
Знаходимо найбільше і найменше значення даної функції на проміжку [-5,-2].
f(-5) = ((-5)^2-8*(-5))/(-5+1) = 65/(-4) = -16,25.
f(-2) = ((-2)^2-8*(-2))/(-2+1) = 20/(-1) = -20.
Визначаємо точки екстремуму даної функції.
Знаходимо первісну:
f'(x) = (2x-8)*(x+1) - 1*(x^2-8x))/((x+1)^2) = (x^2 + 2x - 8)/((x + 1)^2).
Прирівнюємо їі до 0 (достатьно чисельник):
x^2 + 2x - 8 = 0, Д = 4+4*8 = 36, х1 = (-2 - 6)/2 = -4, х2 = (-2 + 6)/2 = 2.
Знаходимо знаки первісної:
х = -5 -4 1 2 3
y' = 0,4375 0 -1,25 0 0,4375 .
У точці х = -4 маємо максимум функції,
f(-4) = ((-4)^2-8*(-4))/(-4+1) = 48/(-3) = -16.
Відповідь:
- найбільше значення даної функції на проміжку [-5,-2] дорівнює -16,
- найменше значення даної функції на проміжку [-5,-2] дорівнює -20,
- максимум функції у точці х = -4,
- мінімум функції у точці х = 2.
2. (a + 11)² — 20a = a² + 22a + 121 — 20a = a² + 2a + 121;
3. 4x² — (x — 3y)² = (2x)² — (x — 3y)² = (2x — x + 3y)(2x + x — 3y) = (x + 3y)(3x — 3y);
4. (a + 2b)(a — 2b) — (a — b)² = a² — 4b² — (a² — 2ab + b²) = a² — 4b² — a² + 2ab — b² = —5b² + 2ab;
5. (b — 1)(b + 1) — (a + 1)(a — 1) = b² — 1² — (a² — 1²) = b² — 1 — a² + 1 = b² — a² = (b — a)(b + a);
6. (a — 5x)² + (a + 5x²) = a² —10ax + 25x² + a + 5x² = a² + a — 10ax + 30x² = a(a + 1) — 10x(a + 3x);
И всё же мне кажется, что ты допустила ошибку в написании данного выражение, поэтому держи альтернативный вариант решения на всякий случай (если ты, конечно, допустила ошибку):
(a — 5x)² + (a + 5x)² = (a — 5x + a + 5x)(a — 5x — a — 5x) = 2a * (—10x) = —20ax;
7. (3a — 2)(3a + 2) + (a + 8)(a — 8) = 9a² — 4 + a² — 64 = 10a² — 68;
8. (2a — 3b)² + (7a — 9b)b = 4a² — 12ab + 9b² + 7ab — 9b² = 4a² — 5ab;
9. (4x + 2)² — (3x + 2)² = (4x + 2 — 3x — 2)(4x + 2 + 3x + 2) = x * (7x + 4) = 7x² + 4x.