Решение: Обозначим одну сторону прямоугольника за а, а другую за в, диагональ за с, тогда: а-в=14 c^2=а^2+в^2 или 26^2=а^2+в^2 Решим систему уравнений: а-в=14 26^2=а^2+в^2 Из первого уравнения а=14+в Подставим данное а во второе уравнение, получим: 676=(14+в)^2+в^2 676=196+28в+в^2+в^2 2в^2+28в-480=0 Чтобы привести биквадратное уравнение в простое квадратное разделим его на 2 и получим: в^2+14в-240=0 в1,2=-14/2+-sqrt(49+240) К сожалению не укладываюсь во времени, перепроверьте и дорешите. Здесь уже легко.
Само уравнение несложное)) про отбор корней из промежутка... вы написали слово "отрезок", а сам промежуток указали в круглых скобках (это важно)... если "отрезок", то скобки должны быть квадратные [-7π/2; -2π] и тогда в отборе три корня: {-7π/2; -5π/2; -7π/3} если для отбора указан промежуток, то решение на рисунке)) мне больше нравится считать дугами, т.е. от начала отсчета (положительного направления оси ОХ) идем ПО часовой стрелке и считаем четвертинками окружности =дугами по (π/2) радиан, пока не насчитаем 7 таких четвертинок (-7π/2) и отмечаем (закрашиваем, заштриховываем...) указанный промежуток (или отрезок) отмеченные корни, попавшие в заштрихованную область, и есть решение второй части упражнения... только их "назвать" нужно правильно... например, нижняя на оси ОУ точка соответствует углу и (+3π/2) и (-π/2) и (-5π/2) осталось выбрать нужное...из указанного промежутка...
Обозначим одну сторону прямоугольника за а, а другую за в, диагональ за с,
тогда: а-в=14
c^2=а^2+в^2 или 26^2=а^2+в^2
Решим систему уравнений:
а-в=14
26^2=а^2+в^2
Из первого уравнения а=14+в Подставим данное а во второе уравнение, получим: 676=(14+в)^2+в^2
676=196+28в+в^2+в^2
2в^2+28в-480=0 Чтобы привести биквадратное уравнение в простое квадратное разделим его на 2 и получим:
в^2+14в-240=0
в1,2=-14/2+-sqrt(49+240)
К сожалению не укладываюсь во времени, перепроверьте и дорешите. Здесь уже легко.